Chapter 2

Unit Conversions

Chapter Map

Unit Conversions

All science requires mathematics. The knowledge of mathematical things is almost innate in us. . . [Mathematics] is the easiest of sciences, a fact which is obvious in that no one's brain rejects it... Roger Bacon (c. 1214-c. 1294)

Stand firm in your refusal to remain conscious during algebra. In real life, I assure you, there is no such thing as algebra.

Fran Lebowitz (b. 1951)

Unit Analysis Step 1

- Step 1: State your question in an expression that sets the unknown unit equal to the value given.
- Start with the same number of units as you want.
- If you want a single unit, start with a value that has a single unit.
- If you want a ratio of two units, start with a value that has a ratio of two units, or start with a ratio of two values, each of which have one unit.
- Put the correct type of unit in the correct position.

Unit Analysis Step 2

- Step 2: Multiply the expression to the right of the equals sign by one or more conversion factors that cancel the unwanted units and generate the desired unit.
- If you are not certain which conversion factor to use, ask yourself, "What is the fundamental conversion and what conversion factor do I use for that type of conversion?"

$$
\begin{aligned}
& \text { Unit Analysis Steps } \\
& 3 \& 4
\end{aligned}
$$

- Step 3: Check to be sure you used correct conversion factors and that your units cancel to yield the desired unit.
- Step 4: Do the calculation, rounding your answer to the correct number of significant figures and combining it with the correct unit.

English-Metric Conversion

 Factors| Type of
 Measurement | Probably
 Most Useful
 to Know | Others Useful to Know | |
| :---: | :---: | :---: | :---: |
| Length | $\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}$ | $\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}$ | $\frac{39.37 \mathrm{in} .}{1 \mathrm{~m}}$ |$\frac{1.094 \mathrm{yd}}{1 \mathrm{~m}}$.

Rounding Answers from Multiplication and Division Step 1

- Step 1: Determine whether each value is exact, and ignore exact values.
- Exact values
- Numbers that come from definitions are exact.
- Numbers derived from counting are exact.
- Do Step 2 for values that are not exact.
- Values that come from measurements are never exact.
- We will assume that values derived from calculations are not exact unless otherwise indicated.

Rounding Answers from Multiplication and Division Step 2

- Step 2: Determine the number of significant figures in each value that is not exact.
- All non-zero digits are significant.
- Zeros between nonzero digits are significant.
- Zeros to the left of nonzero digits are not significant.
- Zeros to the right of nonzero digits in numbers that include decimal points are significant.
- Zeros to the right of nonzero digits in numbers without decimal points are ambiguous for significant figures.

Rounding Answers from Multiplication and Division Step 3

- Step 3: When multiplying and dividing, round your answer off to the same number of significant figures as the value used with the fewest significant figures.
- If the digit to the right of the final digit you want to retain is less than 5 , round down (the last digit remains the same).
- If the digit to the right of the final digit you want to retain is 5 or greater, round up (the last significant digit increases by 1).

Rounding Answers from Addition and Subtraction

- Step 1: Determine whether each value is exact, and ignore exact values.
- Skip exact values.
- Do Step 2 for values that are not exact.
- Step 2: Determine the number of decimal positions for each value that is not exact.
- Step 3: Round your answer to the same number of decimal positions as the inexact value with the fewest decimal places.

Density

- Mass density is mass divided by volume. It is usually just called density.

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

- It can be used as a unit analysis conversion factor that converts mass to volume or volume to mass.

Percentage and Percentage Calculations

- Mass percentages and volume percentage can be used as unit analysis conversion factors to convert between units of the part and units of the whole.

For X\% by mass
X (any mass unit) part
100 (same mass unit) whole
For X\% by volume
X (any volume unit) part 100 (same volume unit) whole

Conversion Types

Temperature Conversions

$?{ }^{\circ} \mathrm{F}=--{ }^{\circ} \mathrm{C}\binom{1.8^{\circ} \mathrm{F}}{1^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}$
$?^{\circ} \mathrm{C}=\left(--{ }^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)\binom{1^{\circ} \mathrm{C}}{1.8^{\circ} \mathrm{F}}$
? $\mathrm{K}=---{ }^{\circ} \mathrm{C}+273.15$

$$
\text { ? }{ }^{\circ} \mathrm{C}=---\mathrm{K}-273.15
$$

