Chapter 3

The Structure of Matter and the Chemical Elements

Chapter Map

Chemistry

The science that deals with the structure and behavior of matter

Scientific Models

 A model is a simplified approximation of reality.

400

= 300

200

100

 Scientific models are simplified but *useful* representations of something real.

Kinetic Molecular Theory

- All matter is composed of tiny particles.
- The particles are in constant motion.
- Increased temperature indicates increased motion of the particles.

400

- 300

200

100

 Solids, liquids and gases differ in the freedom of motion of their particles and in how strongly the particles attract each other.

Solid

400

- 300

200

- Constant shape and volume
- The particles are constantly moving, colliding with other particles, and changing their direction and velocity.
- Each particle is trapped in a small cage whose walls are formed by other particles that are strongly attracted to each other.

Liquid

400

- 300

- Constant volume but variable shape
- The particles are moving fast enough to break the attractions between particles that form the walls of the cage that surround particles in the solid form.
- Thus each particle in a liquid is constantly moving from one part of the liquid to another.

Evaporation

Gas

400

- 300

200

- Variable shape and volume
- Large average distances between particles
- Little attraction between particles
- Constant collisions between particles, leading to constant changes in direction and velocity

The Nature of Gases

Distillation

114+ Known Elements

- 83 are stable and found in nature.
 - -Many of these a very rare.
- 7 are found in nature but are radioactive.

400

= 300

200

100

24+ are not natural on the earth.
-2 or 3 of these might be found in stars.

Group Numbers on the Periodic Table

							1				•							18 8A
	1 1A	2 2A								1	$\stackrel{1}{H}$		13 3A	14 4A	15 5A	16 6A	17 7A	2 He
2	3 Li	4 Be					,			_			5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8 8B	9 8B	10 8B	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Uuu	112 Uub		114 Uuq		116 Uuh		
			57	58	59	60	61	62	63	64	65	66	67	68	69	70		
		6	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		7	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Group Names

													Noble Gases						
Alkali Metals				Alkaline Earth Metals Haloger								ens							
																		•	18 8A
	1 1A	2 2A									1	$\frac{1}{H}$		13 3A	14 4A	15 5A	16 6A	17 7A	2 He
2	3 Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg		3 3B	4 4B	5 5B	6 6B	7 7B	8 8B	9 8B	10 8B	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Uuu	112 Uub		114 Uuq		116 Uuh		
		6		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
		7		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Metals, Nonmetals, and Metalloids

Characteristics of Metallic Elements

- Metals have a shiny metallic luster.
- Metals conduct heat well and conduct electric currents in the solid form.

/	400	
/-	200 ³⁰⁰	
L	100	

- Metals are malleable.
 - For example, gold, Au, can be hammered into very thin sheets without breaking.

Classification of Elements

Solid, Liquid, and Gaseous Elements

Atoms

400

- 300

100

• Tiny...about 10⁻¹⁰ m

- If the atoms in your body were 1 in. in diameter, you'd bump your head on the moon.
- Huge number of atoms in even a small sample of an element
 - 1/2 carat diamond has 5×10^{21} atoms...if lined up, would stretch to the sun.

Particles in the Atom

- Neutron (n)
 - 0 charge 1.00867 u in nucleus
- Proton (p)

400

- 300

200

- +1 charge 1.00728 u in nucleus
- Electron (e⁻)
 - -1 charge 0.000549 u outside nucleus

The Electron

"If I seem unusually clear to you, you must have misunderstood what I said."

Alan Greenspan,

400

- 300

-200

100

Head of the Federal Reserve Board

"It is probably as meaningless to discuss how much room an electron takes up as to discuss how much room a fear, an anxiety, or an uncertainty takes up."

> Sir James Hopwood Jeans, English mathematician, physicist and astronomer (1877-1946)

Electron Cloud for Hydrogen Atom

The negative charge is most intense at the nucleus and diminishes in intensity with increased distance from the nucleus.

400

- 300

200

Carbon Atom

lons

400

- 300

200

- **Ions** are charged particles due to a loss or gain of electrons.
- When particles lose one or more electrons, leaving them with a positive overall charge, they become *cations*.
- When particles gain one or more electrons, leaving them with a negative overall charge, they become *anions*.

Example Ions

Isotopes

- 300

200

- Isotopes are atoms with the same atomic number but different mass numbers.
- Isotopes are atoms with the same number of protons and electrons in the uncharged atom but different numbers of neutrons.
- **Isotopes** are atoms of the same element with different masses.

Isotopes of Hydrogen

Possible Discovery of Elements 113 and 115

Dubna, Russia

400

- 300

200

- Dubna's Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory
- Bombarded a target enriched in americium, ²⁴³Am, with calcium atoms, ⁴⁸Ca.
- From analysis of decay products, they concluded that four atoms of element 115 were created.

Elements 113 and 115

- Created ²⁸⁸115, which lasted about 100 milliseconds...a very long time for this large an isotope.
- ²⁸⁸115 emitted an α-particle,
 ⁴He, to form ²⁸⁴113.
- The results need to be confirmed.

400

300

Why try to make elements that last such a short time?

• To support theories of the nature of matter.

400

- 300

200

100

 The standard model of the nature of matter predicts that elements with roughly 184 neutrons and 114 protons would be fairly stable. (See next slide.)

 – ²⁸⁸115, which lasted a relatively long time, has 115 protons and 173 neutrons.

Why try to make elements that last such a short time? (cont.)

- The technology developed to make new elements is also being used for medical purposes.
 - Heavy-ion therapy as a treatment for inoperable cancers
 - Beams of carbon atoms shot at tumor.
 - Heavier particle beam is less likely to scatter.

400

- 300

-200

100

• Releases most of energy at end of path so easier to focus.

Effect on Chemical Changes

Electrons

- Can be gained, lost, or shared...actively participate in chemical changes
- Affect other atoms through their -1 charge
- Protons
 - Affect other atoms through their +1 charge
 - Determine the number of electrons in uncharged atoms

Neutrons

400

- 300

=200

100

 No charge...no effect outside the atom and no direct effect on the number of electrons.

Tin has ten natural isotopes.

To Describe Structure of Elements

- What particles?
 - Noble gases atoms
 - Other nonmetals molecules
 - Diatomic elements H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂
 - S₈, Se₈, P₄

400

- 300

200

- C(diamond) huge molecules
- Metallic elements cations in a sea of electrons

To Describe Structure of Elements (2)

- Solid, liquid, or gas?
 - Gases H₂, N₂, O₂, F₂, Cl₂, He, Ne, Ar, Kr, and Xe
 - Liquids Br₂ and Hg
 - Solids the rest

400

- 300

100

Standard description of (1) solid,
(2) liquid, (3) gas, or (4) metal.

Helium Gas, He

le

2 protons and 2 neutrons in a tiny nucleus

> -2 charge cloud from 2 electrons

Hydrogen, H₂, Molecule

The two electrons generate a charge cloud surrounding both nuclei.

400

- 300

-200

100

Hydrogen nuclei

Space-filling model Emphasizes individual atoms

Ball-and-stick model Emphasizes bond

Hydrogen Gas, H₂

Bromine Liquid

An I_2 molecule

Iodine Solid

Sea-of-Electrons Model