Chapter 6

Acids, Bases, and Acid-Base Reactions

Chapter Map

Binary acids and oxyacids

Names and formulas of acids Summary of chemical nomenclature

Molecular compounds
(Section 4.2)

Arrhenius Acid Definition

- An acid is a substance that generates hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$ (often described as H^{+}), when added to water.
- An acidic solution is a solution with a significant concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions.

Characteristics of Acids

- Acids have a sour taste.
- Acids turn litmus from blue to red.
- Acids react with bases.

Strong Acid and Water

When HCl dissolves in water, hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, and chloride ions, Cl^{-}, ions form.

This proton, H^{+}, is transferred to a water molecule.

Solution of a Strong Acid

Types of Acids

- Binary acids have the general formula of $\mathrm{HX}(\mathrm{aq})$
$-\mathrm{HF}(a q), \mathrm{HCl}(a q), \mathrm{HBr}(a q)$, and $\mathrm{HI}(a q)$
- Oxyacids have the general formula $\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$.
$-\mathrm{HNO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
- Organic (carbon-based) acids
$-\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Acetic Acid

Monoprotic and Polyprotic Acids

- If each molecule of an acid can donate one hydrogen ion, the acid is called a monoprotic acid.
- If each molecule can donate two or more hydrogen ions, the acid is a polyprotic acid.
- A diprotic acid, such as sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, has two acidic hydrogen atoms.
- Some acids, such as phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, are triprotic acids.

Strong and Weak Acids

- Strong Acid = due to a completion reaction with water, generates close to one $\mathrm{H}_{3} \mathrm{O}^{+}$for each acid molecule added to water.
- Weak Acid = due to a reversible reaction with water, generates significantly less than one $\mathrm{H}_{3} \mathrm{O}^{+}$for each molecule of acid added to water.

Weak Acid and Water

Acetic acid reacts with water in a reversible reaction, which forms hydronium and acetate ions.

Solution of Weak Acid

In a typical acetic acid solution, there areabout 250 times as many uncharged acetic acid molecules, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, as acetate ions, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$.

Hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, surrounded by the negatively charged oxygen ends of water molecules.

For every 250 molecules of the weak acid acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, added to water, there are about

| $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$$+\mathrm{H}_{2} \mathrm{O}(l)$ |
| :---: | :---: | :---: |
| 249 uncharged acetic acid molecules |$~ \rightleftharpoons \quad$| $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$ |
| :---: |
| One acetate ion |$+\quad+$| $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$ |
| :---: |
| One hydronium ion |

Abstract

 dobかbdbda

∞
3

For every 250 molecules of the strong acid hydrochloric acid, HCl , added to water, there are about

Strong and Weak Acids

[^0]
Sulfuric Acid

$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})
$$

$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

Acid Summary

Strong

Binary acid

Oxyacid
hydrochloric acid,
$\mathrm{HCl}(\mathrm{aq})$
nitric acid, HNO_{3}
sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$

Organic acid none
other acids
with $\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$

Weak

hydrofluoric acid
acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Names and Formulas of Binary Acids

- Names have the general form of hydro(root)ic acid, such as hydrochloric acid.
- The formulas are usually followed by (aq), such as $\mathrm{HCl}(a q)$.

Names and Formulas for Oxyacids

- If enough H^{+}ions are added to a (root)ate polyatomic ion to completely neutralize its charge, the (root)ic acid is formed.
- Nitrate, $\mathrm{NO}_{3}{ }^{-}$, goes to nitric acid, HNO_{3}.
- Sulfate, $\mathrm{SO}_{4}{ }^{2-}$, goes to sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$. (Note the -ur- in the name.)
- Phosphate, $\mathrm{PO}_{4}{ }^{3-}$, goes to phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$. (Note the -or- in the name.)

Chemical Nomenclature

- General procedure for naming compounds (See Table 5.5 in the text.)
- Step 1: Decide what type of compound the name or formula represents.
- Step 2: Apply the rules for writing the name or formula for that type of compound.

Arrhenius Base Definitions

- A base is a substance that generates OH^{-}when added to water.
- A basic solution is a solution with a significant concentration of OH^{-} ions.

Characteristics of Bases

- Bases have a bitter taste.
- Bases feel slippery on your fingers.
- Bases turn litmus from red to blue.
- Bases react with acids.

Strong Bases

- Strong Base = due to a completion reaction with water, generates close to one (or more) OH^{-}for each formula unit of base added to water.
- Metal hydroxides are strong bases.

Ammonia and Water

Ammonia reacts with water in a reversible reaction, which forms ammonium and hydroxide ions.

This proton, H^{+}, is
transferred to an
ammonia molecule.

$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

Weak Base

- Weak Base = due to a reversible reaction with water, generates significantly less than one OH^{-}for each formula unit of base added to water.
- Ammonia and ionic compounds that contain $\mathrm{CO}_{3}{ }^{2-}$ or $\mathrm{HCO}_{3}{ }^{-}$are weak bases.

Ammonia Solution

In a typical ammonia solution, there are about 200 times as many uncharged ammonia molecules, NH_{3}, as ammonium ions NH_{4}^{+}.

Carbonate Bases

$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Arrhenius Bases

Strong Weak

Ionic
Compounds

Certain
Uncharged molecules

Metal
hydroxides with $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{HCO}_{3}{ }^{-}$

None
NH_{3}

pH

- Acidic solutions have pH values less than 7, and the more acidic the solution is, the lower its pH .
- Basic solutions have pH values greater than 7, and the more basic the solution is, the higher its pH .

pH Range

Neutralization Reactions

- Reactions between Arrhenius acids and Arrhenius bases are called neutralization reactions.
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq})$
$\rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaNO}_{3}(\mathrm{aq})$

Aqueous Nitric Acid

Mixture of HNO_{3} and NaOH Before Reaction

At the instant after nitric acid and sodium hydroxide solutions are mixed and before the reaction, four separate ions move throughout the solution, breaking and making attractions and

Strong Acid and Strong Base Reaction

The hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, from the strong acid reacts with the hydroxide ion, OH^{-}, from the strong base to form water, $\mathrm{H}_{2} \mathrm{O}$.

This proton, H^{+}, is transferred to a hydroxide ion.

$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
$+$
$\mathrm{OH}^{-}(a q)$
\rightarrow
$2 \mathrm{H}_{2} \mathrm{O}(l)$

Mixture of HNO_{3} and NaOH After the Reaction

After the reaction between nitric acid and sodium hydroxide, hydroxide ions, OH^{-}, and hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, have combined to form water, $\mathrm{H}_{2} \mathrm{O}$.

Reaction between an Acid and a Hydroxide Base.

- The reaction has the double displacement form.

$$
A B+C D \rightarrow A D+C B
$$

- The positive part of the acid is H^{+}.
- The hydroxide base can be soluble or insoluble.
- The products are water and a water-soluble ionic compound.

Reaction between an Acid and a Carbonate Base

- The reaction has the double displacement form.

$$
\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}
$$

- The positive part of the acid is H^{+}.
- The products are water, carbon dioxide, and a water-soluble ionic compound. The $\mathrm{H}_{2} \mathrm{O}$ and the CO_{2} come from the decomposition of the initial product $\mathrm{H}_{2} \mathrm{CO}_{3}$.

Arrhenius Acid-Base Reactions?

$\mathrm{NH}_{3}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$ neutral acid
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$ base neutral

Acid and Base Definitions

- Acid
- Arrhenius: a substance that generates $\mathrm{H}_{3} \mathrm{O}^{+}$in water
- Brønsted-Lowry: a proton, H^{+}, donor
- Base
- Arrhenius: a substance that generates OH^{-} in water
- Brønsted-Lowry: a proton, H^{+}, acceptor
- Acid-Base Reaction
- Arrhenius: between an Arrhenius acid and base
- Brønsted-Lowry: a proton $\left(\mathrm{H}^{+}\right)$transfer

Brønsted-Lowry Acids and Bases

$\mathrm{NH}_{3}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$ base acid

Why Two Definitions for Acids and Bases? (1)

- Positive Aspects of Arrhenius Definitions
- All isolated substances can be classified as acids (generate $\mathrm{H}_{3} \mathrm{O}^{+}$in water), bases (generate OH^{-}in water), or neither.
- Allows predictions, including (1) whether substances will react with a base or acid, (2) whether the pH of a solution of the substance will be less than 7 or greater than 7 , and (3) whether a solution of the substance will be sour.
- Negative Aspects of Arrhenius Definitions
- Does not include similar reactions (H^{+}transfer reactions) as acid-base reactions.

Why Two Definitions for Acids and Bases? (2)

- Positive Aspects of Brønsted-Lowry Definitions
- Includes similar reactions (H^{+}transfer reactions) as acid-base reactions.
- Negative Aspects of Brønsted-Lowry Definitions
- Cannot classify isolated substances as acids (generate $\mathrm{H}_{3} \mathrm{O}^{+}$in water), bases (generate OH^{-}in water), or neither. The same substance can sometimes be an acid and sometimes a base.
- Does not allow predictions of (1) whether substances will react with a base or acid, (2) whether the pH of a solution of the substance will be less than 7 or greater than 7, and (3) whether a solution of the substance will be sour.

Conjugate Acid-Base Pairs

Brønsted-Lowry Acids and

 Bases$\mathrm{NH}_{3}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid acid base
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid acid base $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$ base acid acid base $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{F}^{-}(a q)$ base acid acid base

Amphoteric Substances

Can be a Brønsted-Lowry acid in one reaction and a Brønsted-Lowry base in another?
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{F}^{-}(\mathrm{aq})$ base acid $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ acid base $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$ base acid $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ acid base

[^0]: ayazazazaasa
 bayazayasayay
 ataasaasaaaaa asaasasasasasa macaratarasaza

 getagatasatasa Hatarataratay
 analanacasanata

