Chapter 6

Acids, Bases, and Acid-Base Reactions

- 300

-200

Chapter Map Names and Summary of Binary acids chemical formulas + and oxyacids of acids nomenclature Strong and weak acids Molecular compounds Acids (Section 4.2) Mono-, di-, and triprotic acids Weak base Acid reaction pH (NH_3) with water Bronsted-Lowry acids and bases Base reaction Bases with water Conjugate acids and bases Acid-Base reactions Strong base (NaOH) Chemical equations (Section 5.1) K Writing equations Dissolving for acid-base reactions ionic compounds Balancing in water chemical equations (Section 5.2) (Section 5.1) Structure Ionic compounds of water (Section 4.5) (Section 4.3)

Arrhenius Acid Definition

- An *acid* is a substance that generates hydronium ions, H₃O⁺ (often described as H⁺), when added to water.
- An acidic solution is a solution with a significant concentration of H₃O⁺ ions.

400

- 300

Characteristics of Acids

- Acids have a sour taste.
- Acids turn litmus from blue to red.
- Acids react with bases.

Strong Acid and Water

When HCI dissolves in water, hydronium ions, H_3O^+ , and chloride ions, CI^- , ions form.

Solution of a Strong Acid

Types of Acids

- Binary acids have the general formula of HX(aq)
 - HF(aq), HCI(aq), HBr(aq), and HI(aq)
- Oxyacids have the general formula $H_a X_b O_c$.
 - $-HNO_3$ and H_2SO_4

-400

- 300

100

• Organic (carbon-based) acids $-HC_2H_3O_2$

Acetic Acid

Monoprotic and Polyprotic Acids

- If each molecule of an acid can donate one hydrogen ion, the acid is called a **monoprotic acid**.
- If each molecule can donate two or more hydrogen ions, the acid is a polyprotic acid.
- A diprotic acid, such as sulfuric acid, H₂SO₄, has two acidic hydrogen atoms.
- Some acids, such as phosphoric acid, H₃PO₄, are triprotic acids.

- 300

-200

Strong and Weak Acids

- Strong Acid = due to a completion reaction with water, generates close to one H₃O⁺ for each acid molecule added to water.
- Weak Acid = due to a reversible reaction with water, generates significantly less than one H₃O⁺ for each molecule of acid added to water.

- 300

200

Weak Acid and Water

Acetic acid reacts with water in a reversible reaction, which forms hydronium and acetate ions.

Solution of Weak Acid

In a typical acetic acid solution, there are about 250 times as many uncharged acetic acid molecules, $HC_2H_3O_2$, as acetate ions, $C_2H_3O_2^-$.

For every 250 molecules of the weak acid acetic acid, HC2H3O2, added to water, there are about $HC_2H_3O_2(aq) + H_2O(l)$ = $C_2H_3O_2^{-}(aq)$ + $H_3O^+(aq)$ One acetate ion One hydronium ion 249 uncharged acetic acid molecules 2 ************ ************ **** ***** *************** *************** **** **** **** *** ***** *************** **** **** *** **ふふふふふふふふふ**ふ **ふ** ふ **ふ** ふ **ふふふふふふふふふ**

For every 250 molecules of the strong acid hydrochloric acid, HCl, added to water, there are about

	HCl(g) Zero uncharged H0	+ Cl mole	$H_2O(l)$	\rightarrow	Cl ⁻ (<i>aq</i>) 250 chloride ions	+ 2	H ₃ O ⁺ (<i>aq</i>) 50 hydronium ions
Strong	Zero uncharged Th	SI IIIOIC	cures	0000 0000			, , o nyaronnan ions
and				000 000 000			
Weak							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Acids				333		33	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

$HSO_{4}^{-}(aq) + H_{2}O(I)$ $\implies H_{3}O^{+}(aq) + SO_{4}^{2-}(aq)$

$H_2SO_4(aq) + H_2O(I)$ $\rightarrow H_3O^+(aq) + HSO_4^-(aq)$

Sulfuric Acid

Acid Summary

Binary acid	Strong hydrochloric acid, HCl(aq)	Weak hydrofluoric acid			
Oxyacid	nitric acid, HNO ₃ sulfuric acid, H ₂ SO ₄	other acids with H _a X _b O _c			
Organic acid	none	acetic acid,			

 $HC_2H_3O_2$

Names and Formulas of Binary Acids

- Names have the general form of hydro(root)ic acid, such as hydrochloric acid.
- The formulas are usually followed by (*aq*), such as HCl(*aq*).

400

= 300

Names and Formulas for Oxyacids

- If enough H⁺ ions are added to a (root)ate polyatomic ion to completely neutralize its charge, the (root)ic acid is formed.
 - Nitrate, NO_3^- , goes to nitric acid, HNO_3 .

400

- 300

200

- Sulfate, SO_4^{2-} , goes to sulfuric acid, H_2SO_4 . (Note the -ur- in the name.)
- Phosphate, PO_4^{3-} , goes to phosphoric acid, H_3PO_4 . (Note the -or- in the name.)

Chemical Nomenclature

- 300

-200

- General procedure for naming compounds (See Table 5.5 in the text.)
 - Step 1: Decide what type of compound the name or formula represents.
 - Step 2: Apply the rules for writing the name or formula for that type of compound.

Arrhenius Base Definitions

- A base is a substance that generates OH⁻ when added to water.
- A basic solution is a solution with a significant concentration of OH⁻ ions.

400

- 300

200

Characteristics of Bases

- Bases have a bitter taste.
- Bases feel slippery on your fingers.
- Bases turn litmus from red to blue.
- Bases react with acids.

400

- 300

Strong Bases

- Strong Base = due to a completion reaction with water, generates close to one (or more) OH⁻ for each formula unit of base added to water.
 - Metal hydroxides are strong bases.

Ammonia and Water

Ammonia reacts with water in a reversible reaction, which forms ammonium and hydroxide ions.

Weak Base

400

- 300

200

- Weak Base = due to a reversible reaction with water, generates significantly less than one OH⁻ for each formula unit of base added to water.
 - Ammonia and ionic compounds that contain CO_3^{2-} or HCO_3^{-} are weak bases.

Ammonia Solution

Carbonate Bases

 $Na_{2}CO_{3}(s) \rightarrow 2Na^{+}(aq) + CO_{3}^{2-}(aq)$ $CO_{3}^{2-}(aq) + H_{2}O(I) \rightleftharpoons HCO_{3}^{-}(aq) + OH^{-}(aq)$

NaHCO₃(s) \rightarrow Na⁺(aq) + HCO₃⁻(aq) HCO₃⁻(aq) + H₂O(l) \rightleftharpoons H₂CO₃(aq) + OH⁻(aq)

Arrhenius Bases

Strong	Weak
--------	------

IonicMetalIonic compoundsCompoundshydroxideswith CO_3^{2-} and HCO_3^{-}

NH₃

Certain None Uncharged molecules

Acidic solutions have pH values less than 7, and the more acidic the solution is, the lower its pH.

pН

400

- 300

200

100

 Basic solutions have pH values greater than 7, and the more basic the solution is, the higher its pH.

pH Range

Neutralization Reactions

400

= 300

200

100

 Reactions between Arrhenius acids and Arrhenius bases are called *neutralization reactions*.

 $HNO_{3}(aq) + NaOH(aq)$ $\rightarrow H_{2}O(I) + NaNO_{3}(aq)$

Aqueous Nitric Acid

Mixture of HNO₃ and NaOH Before Reaction

Strong Acid and Strong Base Reaction

The hydronium ion, H_3O^+ , from the strong acid reacts with the hydroxide ion, OH^- , from the strong base to form water, H_2O .

Mixture of HNO₃ and NaOH After the Reaction

Reaction between an Acid and a Hydroxide Base.

- The reaction has the double displacement form.
 - $AB + CD \rightarrow AD + CB$
 - The positive part of the acid is H⁺.
- The hydroxide base can be soluble or insoluble.
- The products are water and a water-soluble ionic compound.

400

- 300

Reaction between an Acid and a Carbonate Base

• The reaction has the double displacement form.

.400

- 300

- $AB + CD \rightarrow AD + CB$
- The positive part of the acid is H⁺.
- The products are water, carbon dioxide, and a water-soluble ionic compound. The H₂O and the CO₂ come from the decomposition of the initial product H₂CO₃.

Arrhenius Acid-Base Reactions?

 $\begin{array}{rcl} \mathsf{NH}_3(aq) \ + \ \mathsf{HF}(aq) &\rightleftharpoons \mathsf{NH}_4^+(aq) \ + \ \mathsf{F}^-(aq) \\ \text{base} & \text{acid} \\ \mathsf{H}_2\mathsf{O}(\mathsf{I}) \ + \ \mathsf{HF}(aq) &\rightleftharpoons \mathsf{H}_3\mathsf{O}^+(aq) \ + \ \mathsf{F}^-(aq) \\ \text{neutral} & \text{acid} \\ \mathsf{NH}_3(aq) \ + \ \mathsf{H}_2\mathsf{O}(\mathsf{I}) &\rightleftharpoons \mathsf{NH}_4^+(aq) \ + \ \mathsf{OH}^-(aq) \\ \text{base} & \text{neutral} \end{array}$

Acid and Base Definitions

• Acid

- Arrhenius: a substance that generates H_3O^+ in water
- Brønsted-Lowry: a proton, H⁺, donor

Base

400

- 300

-200

100

- Arrhenius: a substance that generates OHin water
- Brønsted-Lowry: a proton, H⁺, acceptor

Acid-Base Reaction

- Arrhenius: between an Arrhenius acid and base
- Brønsted-Lowry: a proton (H⁺) transfer

Brønsted-Lowry Acids and Bases

- $NH_3(aq) + HF(aq) \rightarrow NH_4^+(aq) + F^-(aq)$ base acid
- $H_2O(I) + HF(aq) \Rightarrow H_3O^+(aq) + F^-(aq)$ base acid
- $NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ base acid

Why Two Definitions for Acids and Bases? (1)

- Positive Aspects of Arrhenius Definitions
 - All isolated substances can be classified as acids (generate H₃O⁺ in water), bases (generate OH⁻ in water), or neither.
 - Allows predictions, including (1) whether substances will react with a base or acid, (2) whether the pH of a solution of the substance will be less than 7 or greater than 7, and (3) whether a solution of the substance will be sour.
- Negative Aspects of Arrhenius Definitions

400

- 300

-200

100

Does not include similar reactions (H⁺ transfer reactions) as acid-base reactions.

Why Two Definitions for Acids and Bases? (2)

- Positive Aspects of Brønsted-Lowry Definitions
 - Includes similar reactions (H⁺ transfer reactions) as acid-base reactions.
- Negative Aspects of Brønsted-Lowry
 Definitions

400

- 300

-200

- Cannot classify isolated substances as acids (generate H₃O⁺ in water), bases (generate OH⁻ in water), or neither. The same substance can sometimes be an acid and sometimes a base.
- Does not allow predictions of (1) whether substances will react with a base or acid, (2) whether the pH of a solution of the substance will be less than 7 or greater than 7, and (3) whether a solution of the substance will be sour.

Conjugate Acid-Base Pairs

Brønsted-Lowry Acids and Bases

 $NH_3(aq) + HF(aq)$ $NH_4^+(aq) + F^-(aq)$ base acid acid base $H_2O(I) + HF(aq) \rightarrow H_3O^+(aq) + F^-(aq)$ base acid acid base $NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ acid base acid base $H_2PO_4^-(aq) + HF(aq) \implies H_3PO_4(aq) + F^-(aq)$ acid acid base base

Amphoteric Substances

Can be a Brønsted-Lowry acid in one reaction and a Brønsted-Lowry base in another?

 $HCO_3^{-}(aq) + HF(aq) \cong CO_2(g) + H_2O(I) + F^{-}(aq)$ base acid $HCO_3^{-}(aq) + OH^{-}(aq) \rightleftharpoons CO_3^{2-}(aq) + H_2O(I)$ acid base $H_2PO_4^{-}(aq) + HF(aq) \implies H_3PO_4(aq) + F^{-}(aq)$ acid base $H_2PO_4^{-}(aq) + 2OH^{-}(aq) \rightarrow PO_4^{3-}(aq) + 2H_2O(I)$ acid base