Chapter 4 Modern Atomic Theory ## Orbitals for Ground States of Known Elements 2s __ 2p __ __ 1s ___ the known elements in their ground states. #### Electron Spin # Pauli Exclusion Principle - No two electrons in an atom can have the same unique set of four quantum numbers. - The first quantum number describes the principal energy level. For example, the quantum number 2 identifies the second principal energy level. $2s \uparrow \downarrow 2p \xrightarrow{\uparrow \downarrow} 1 \downarrow \downarrow$ $2s \xrightarrow{\uparrow \downarrow} 2p \xrightarrow{} x \xrightarrow{} x$ $1s \xrightarrow{\uparrow \downarrow}$ - The first two quantum numbers together describe a sublevel. For example, 2,1 describes the 2p sublevel. - The first three quantum numbers describe an orbital. For example, 2,1,1 describes one of the 2p orbitals. - It takes all four quantum numbers to describe an electron. For example, 2,1,1,+1/2 describes an electron in a 2p orbital. # Pauli Exclusion Principle - No two electrons in an atom can be in the same principal energy level, the same sublevel, the same orbital, and with the same spin. - This means that electrons in the same orbital must have opposite spin. - Because there are only two possible spins, each orbital, no matter what its size, can have a maximum of two electrons. #### **Orbital Diagrams** $$1s \stackrel{\uparrow}{=}$$ $$2s \stackrel{\uparrow \downarrow}{=} 2p \stackrel{\uparrow}{=} ---$$ $$1s \stackrel{\uparrow \downarrow}{=}$$ $$2s \stackrel{\uparrow\downarrow}{=} 2p \stackrel{\uparrow}{=} \stackrel{\uparrow}{=} \stackrel{\uparrow}{=}$$ $$1s \stackrel{\uparrow \downarrow}{=}$$ $$2s \xrightarrow{\uparrow \downarrow} 2p \xrightarrow{\uparrow \downarrow} \xrightarrow{\uparrow} \xrightarrow{\uparrow}$$ $$2s \stackrel{\uparrow}{=}$$ $$2s \xrightarrow{\uparrow \downarrow}$$ $$2s \stackrel{\uparrow\downarrow}{=}$$ $$2s \stackrel{\uparrow}{=} 2p \stackrel{\uparrow}{=} \stackrel{\uparrow}{=}$$ $$1s \stackrel{\uparrow\downarrow}{=}$$ $$2s \stackrel{\uparrow\downarrow}{\longrightarrow} 2p \stackrel{\uparrow\downarrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow}$$ $$1s \stackrel{\uparrow \downarrow}{=}$$ $$2s \xrightarrow{\uparrow\downarrow} 2p \xrightarrow{\uparrow\downarrow} \xrightarrow{\uparrow\downarrow} \xrightarrow{\uparrow\downarrow}$$ $$1s \stackrel{\uparrow\downarrow}{=}$$ # Drawing Orbital Diagrams - For each sublevel with at least one electron, draw one line for each s sublevel, three lines for each p sublevel, five lines for each d sublevel, and seven lines for each f sublevel. - Label each sublevel. - Move up the page to indicate the order in which the orbitals are filled. For the first 18 elements, the order of filling is 1s 2s 2p 3s 3p. A more complete order of filling will be described soon. - For orbitals containing two electrons, draw one arrow up and one arrow down to indicate the electrons' opposite spin. - When adding electrons to orbitals of the same energy, follow Hund's Rule. # Second Period Electron Configurations #### Electron Configurations The information in orbital diagrams is often described in a shorthand notation called an electron configuration. ### Ways to Describe Electrons in Atoms The following is an orbital diagram for a nitrogen atom. • The following is the electron configuration for nitrogen. $$1s^2 2s^2 2p^3$$ ## Orbital Diagrams $1s ext{ } }$ $1s ext{ } }$ # Writing Electron Configurations - Determine the number of electrons in the atom from its atomic number. - Add electrons to the sublevels in the correct order of filling. - Add a maximum of two electrons to each s sublevel, 6 to each p sublevel, 10 to each d sublevel, and 14 to each f sublevel. # Order of Orbital Filling 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p #### Order of Filling from the Periodic Table #### Long Periodic Table ## Exercise 4.2 and 11.1 Write the complete electron configuration and draw an orbital diagram for antimony, Sb. #### Periodic Table | | | | | | | | | | | | | | | | | | | 18 | |---|------------------|------------------------------|----------------|-----------------------------|-----------|-----------------------|-----------|--------------|---------------|-----------|------------------|--------------|------------------|------------------|------------------------|-------------------|-------------------|---------------------| 8A | | | 1 | 2 | | | | | | | | , | 1 | | 13 | 14 | 15 | 16 | 17 | 2 | | | 1A | 2A | | | | | | | | 1 | H
1.00794 | | 3A | 4A | 5A | 6A | 7A | He
4.0026 | | , | 3
Li
6.941 | 4
Be
_{9.0122} | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
20.1797 | | | 11
N. | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al | 14
Si | 15
P | 16
C | 17
Cl | 18 | | | Na
22.9898 | Mg
24.3050 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | A1
26.9815 | 28.0855 | 30.9738 | S
32.066 | 35.4527 | Ar
39.948 | | | 19
K | Ca 20 | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | | 39.0983 | 40.078 | 44.9559 | 47.867 | 50.9415 | 51.9961 | 54.9380 | 55.845 | 58.9332 | 58.6934 | 63.546 | 65.39 | 69.723 | 72.61 | 74.9216 | 78.96 | 79.904 | 83.80 | | | 37
Rb | 38
Sr | 39
Y | $\overset{40}{\mathrm{Zr}}$ | Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
A a | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | | 85.4678 | 87.62 | 88.9058 | 91.224 | 92.9064 | 95.95 | (98) | 101.07 | 102.9055 | 106.42 | Ag
107.868 | 112.411 | 114.818 | 118.710 | 121.760 | 127.60 | 126.9045 | 131.29 | | | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
U | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | , | 132.9054 | 137.327 | 174.967 | 178.49 | 180.948 | W
183.84 | 186.207 | 190.23 | 192.22 | 195.08 | 196.9665 | Hg
200.59 | 204.38 | 207.2 | 208.9804 | (209) | (210) | (222) | | , | 87
Fr | 88
Ra | 103
Lr | 104
R f | 105
Db | 106
Sa | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
D o | 112
Cn | 113
Nh | 114
Fl | 115
Mc | 116
Lv | 117
Ts | 118
Og | | | (223) | (226) | (262) | (261) | (262) | Sg (266) | (264) | (269) | (268) | (281) | Rg (272) | (285) | (284) | (289) | (288) | (293) | (294) | Og (294) | 6 | 57
L a | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Tb | 66
Dr | 67
Ho | 68
Er | 69
Tm | 70
Yb | | | | | | 6 | La
138.9055 | 140.115 | 140.9076 | 1 NQ
144.24 | (145) | 5m
150.36 | EU
151.965 | 157.25 | 1 D
158.9253 | Dy
162.50 | 164.9303 | Er
167.26 | 1 m
168.9342 | 173.04 | | | 96 Cm (247) Am (243) 98 Cf (251) Es (252) Bk (247) 100 Fm (257) 101 Md (258) 102 No (259) 94 Pu (244) 92 238.0289 93 $\mathop{Np}_{\scriptscriptstyle{(237)}}$ 90 Th 232.0381 Ac Pa 231.0359 ### Exercise 4.2 and 11.1 Write the complete electron configuration and draw an orbital diagram for antimony, Sb. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^3$ # Abbreviated Electron Configurations - The highest energy electrons are most important for chemical bonding. - The noble gas configurations of electrons are especially stable and, therefore, not important for chemical bonding. - We often describe electron configurations to reflect this representing the noble gas electrons with a noble gas symbol in brackets. - For example, for sodium 1s² 2s² 2p⁶ 3s¹ goes to [Ne] 3s¹ # Abbreviated Electron Configuration Steps for Zinc ### Exercise 4.3 and 11.2 Write abbreviated electron configurations for (a) rubidium, Rb, (b) bismuth, Bi. ### Common Mistakes - Complete electron configurations miscounting electrons (Use the periodic table to determine order of filling.) - Orbital diagrams forgetting to leave electrons unpaired with the same spin when adding electrons to the p, d, or f sublevels (Hund's Rule) - Abbreviated electron configurations forgetting to put 4f¹⁴ after [Xe] ## Electron Configuration Tutorials Complete electron configurations. https://preparatorychemistry.com/Comp_Electron_Config_Canvas.html Abbreviated electron configurations https://preparatorychemistry.com/Abb Electron Config Canvas.html