Chapter 4
Modern Atomic
Theory

Orbitals for Ground States of Known Elements

2s __ 2p __ __

1s ___

the known elements in their

ground states.

Electron Spin

Pauli Exclusion Principle

- No two electrons in an atom can have the same unique set of four quantum numbers.
- The first quantum number describes the principal energy level. For example, the quantum number 2 identifies the second principal energy level. $2s \uparrow \downarrow 2p \xrightarrow{\uparrow \downarrow} 1 \downarrow \downarrow$

 $2s \xrightarrow{\uparrow \downarrow} 2p \xrightarrow{} x \xrightarrow{} x$ $1s \xrightarrow{\uparrow \downarrow}$

- The first two quantum numbers together describe a sublevel. For example, 2,1 describes the 2p sublevel.
- The first three quantum numbers describe an orbital. For example, 2,1,1 describes one of the 2p orbitals.
- It takes all four quantum numbers to describe an electron. For example, 2,1,1,+1/2 describes an electron in a 2p orbital.

Pauli Exclusion Principle

- No two electrons in an atom can be in the same principal energy level, the same sublevel, the same orbital, and with the same spin.
- This means that electrons in the same orbital must have opposite spin.
- Because there are only two possible spins, each orbital, no matter what its size, can have a maximum of two electrons.

Orbital Diagrams

$$1s \stackrel{\uparrow}{=}$$

$$2s \stackrel{\uparrow \downarrow}{=} 2p \stackrel{\uparrow}{=} ---$$

$$1s \stackrel{\uparrow \downarrow}{=}$$

$$2s \stackrel{\uparrow\downarrow}{=} 2p \stackrel{\uparrow}{=} \stackrel{\uparrow}{=} \stackrel{\uparrow}{=}$$

$$1s \stackrel{\uparrow \downarrow}{=}$$

$$2s \xrightarrow{\uparrow \downarrow} 2p \xrightarrow{\uparrow \downarrow} \xrightarrow{\uparrow} \xrightarrow{\uparrow}$$

$$2s \stackrel{\uparrow}{=}$$

$$2s \xrightarrow{\uparrow \downarrow}$$

$$2s \stackrel{\uparrow\downarrow}{=}$$

$$2s \stackrel{\uparrow}{=} 2p \stackrel{\uparrow}{=} \stackrel{\uparrow}{=}$$

$$1s \stackrel{\uparrow\downarrow}{=}$$

$$2s \stackrel{\uparrow\downarrow}{\longrightarrow} 2p \stackrel{\uparrow\downarrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow}$$

$$1s \stackrel{\uparrow \downarrow}{=}$$

$$2s \xrightarrow{\uparrow\downarrow} 2p \xrightarrow{\uparrow\downarrow} \xrightarrow{\uparrow\downarrow} \xrightarrow{\uparrow\downarrow}$$

$$1s \stackrel{\uparrow\downarrow}{=}$$

Drawing Orbital Diagrams

- For each sublevel with at least one electron, draw one line for each s sublevel, three lines for each p sublevel, five lines for each d sublevel, and seven lines for each f sublevel.
- Label each sublevel.
- Move up the page to indicate the order in which the orbitals are filled. For the first 18 elements, the order of filling is 1s 2s 2p 3s 3p. A more complete order of filling will be described soon.
- For orbitals containing two electrons, draw one arrow up and one arrow down to indicate the electrons' opposite spin.
- When adding electrons to orbitals of the same energy, follow Hund's Rule.

Second Period Electron Configurations

Electron Configurations

 The information in orbital diagrams is often described in a shorthand notation called an electron configuration.

Ways to Describe Electrons in Atoms

 The following is an orbital diagram for a nitrogen atom.

• The following is the electron configuration for nitrogen.

$$1s^2 2s^2 2p^3$$

Orbital Diagrams

 $1s ext{ } ext{ }$

 $1s ext{ } ext{ }$

Writing Electron Configurations

- Determine the number of electrons in the atom from its atomic number.
- Add electrons to the sublevels in the correct order of filling.
- Add a maximum of two electrons to each s sublevel, 6 to each p sublevel, 10 to each d sublevel, and 14 to each f sublevel.

Order of Orbital Filling

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

Order of Filling from the Periodic Table

Long Periodic Table

Exercise 4.2 and 11.1

Write the complete electron configuration and draw an orbital diagram for antimony, Sb.

Periodic Table

																		18
																		8A
	1	2								,	1		13	14	15	16	17	2
	1A	2A								1	H 1.00794		3A	4A	5A	6A	7A	He 4.0026
,	3 Li 6.941	4 Be _{9.0122}											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
	11 N.	12	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 C	17 Cl	18
	Na 22.9898	Mg 24.3050	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	A1 26.9815	28.0855	30.9738	S 32.066	35.4527	Ar 39.948
	19 K	Ca 20	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	39.0983	40.078	44.9559	47.867	50.9415	51.9961	54.9380	55.845	58.9332	58.6934	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
	37 Rb	38 Sr	39 Y	$\overset{40}{\mathrm{Zr}}$	Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 A a	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	85.4678	87.62	88.9058	91.224	92.9064	95.95	(98)	101.07	102.9055	106.42	Ag 107.868	112.411	114.818	118.710	121.760	127.60	126.9045	131.29
	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 U	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
,	132.9054	137.327	174.967	178.49	180.948	W 183.84	186.207	190.23	192.22	195.08	196.9665	Hg 200.59	204.38	207.2	208.9804	(209)	(210)	(222)
,	87 Fr	88 Ra	103 Lr	104 R f	105 Db	106 Sa	107 Bh	108 Hs	109 Mt	110 Ds	111 D o	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
	(223)	(226)	(262)	(261)	(262)	Sg (266)	(264)	(269)	(268)	(281)	Rg (272)	(285)	(284)	(289)	(288)	(293)	(294)	Og (294)
		6	57 L a	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dr	67 Ho	68 Er	69 Tm	70 Yb		
		6	La 138.9055	140.115	140.9076	1 NQ 144.24	(145)	5m 150.36	EU 151.965	157.25	1 D 158.9253	Dy 162.50	164.9303	Er 167.26	1 m 168.9342	173.04		

96

Cm

(247)

Am

(243)

98

Cf

(251)

Es

(252)

Bk

(247)

100

Fm

(257)

101

Md

(258)

102

No

(259)

94

Pu

(244)

92

238.0289

93

 $\mathop{Np}_{\scriptscriptstyle{(237)}}$

90

Th

232.0381

Ac

Pa

231.0359

Exercise 4.2 and 11.1

Write the complete electron configuration and draw an orbital diagram for antimony, Sb.

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^3$

Abbreviated Electron Configurations

- The highest energy electrons are most important for chemical bonding.
- The noble gas configurations of electrons are especially stable and, therefore, not important for chemical bonding.
- We often describe electron configurations to reflect this representing the noble gas electrons with a noble gas symbol in brackets.
- For example, for sodium
 1s² 2s² 2p⁶ 3s¹ goes to [Ne] 3s¹

Abbreviated Electron Configuration Steps for Zinc

Exercise 4.3 and 11.2

Write abbreviated electron configurations for (a) rubidium, Rb, (b) bismuth, Bi.

Common Mistakes

- Complete electron configurations miscounting electrons (Use the periodic table to determine order of filling.)
- Orbital diagrams forgetting to leave electrons unpaired with the same spin when adding electrons to the p, d, or f sublevels (Hund's Rule)
- Abbreviated electron configurations forgetting to put 4f¹⁴ after [Xe]

Electron Configuration Tutorials

Complete electron configurations.

https://preparatorychemistry.com/Comp_Electron_Config_Canvas.html

Abbreviated electron configurations

https://preparatorychemistry.com/Abb Electron Config Canvas.html