## Organic Chemistry

- Organic chemistry is the chemistry of carbon-based compounds.
- There are two reasons why there are millions of organic chemicals.
  - Carbon atoms can form strong bonds to other carbon atoms and still form bonds to atoms of other elements.
  - There are many different ways to arrange the same atoms in carbon-based compounds.

#### Isomers

 Isomers are molecules with the same atoms (same molecular formula) but a different arrangement of the atoms in space (different structural formula).

# Ways to Describe Organic Compounds (Methylpropane)

Lewis structures

Condensed formulas
 CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>3</sub>

Line drawings



## Ways to Describe Organic Compounds (butyl ethyl ether)



CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub> or CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub>





Carbon atoms with two hydrogen atoms attached



Carbon atoms with three hydrogen atoms attached

# Ways to Describe Organic Compounds (1-hexanol)





HO

## Ways to Describe Organic Compounds (3-hexanol)



CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>







#### **Alkanes**

Hydrocarbons (compounds composed of carbon and hydrogen) in which all of the carbon-carbon bonds are single bonds



2,2,4-trimethylpentane, CH<sub>3</sub>C(CH<sub>3</sub>)<sub>2</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>3</sub>



# Pre-ignition Knock and Octane Rating

If the gasoline-air mixture reacts too soon, before the peak of the stroke of the piston, the piston pushes the crankshaft in the opposite direction, causing a vibration or "pre-ignition knock".

If the gasoline-air mixture ignites at (or just past) the peak of the stroke of the piston, the crankshaft is turned, which ultimately turns the wheels.

Straight-chain hydrocarbons, such as heptane, are more likely to react early, so a gasoline that has a higher percentage of straight-chain hydrocarbons has a greater tendency toward pre-ignition knock.

Branched-chain hydrocarbons, such as 2,2,4-trimethylpentane, are less likely to react early, so a gasoline that has a higher percentage of branched-chain hydrocarbons has a lower tendency toward pre-ignition knock.



Heptane



2,2,4-trimethylpentane

# Steps to Octane Rating

- Measure efficiency and degree of vibration for a test engine running on various percentages of heptane (a straight-chain hydrocarbon) and 2,2,4trimethylpentane (a branched-chain hydrocarbon).
- Run the same test engine with the gasoline to be tested, and measure its efficiency and degree of vibration.
- Assign an octane rating to the gasoline based on comparison of the efficiency and degree of vibration of the test engine with the gasoline and the various percentages of 2,2,4-trimethylpentane (octane or isooctane) and heptane. For example, if the gasoline runs the test engine as efficiently as 91% 2,2,4-trimethylpentane (octane or isooctane) and 9% heptane, it gets an octane rating of 91.

# Alkenes

Hydrocarbons that have one or more carboncarbon double bonds



2-methylpropene (isobutene), CH<sub>2</sub>C(CH<sub>3</sub>)CH<sub>3</sub>

# Alkynes

Hydrocarbons that have one or more carboncarbon triple bonds

The triple bond makes this hydrocarbon an alkyne.

$$H-C\equiv C-H$$



Ethyne (acetylene), HCCH

### Benzene



## Benzene



# Arenes (or Aromatics) - Compounds that contain the benzene ring



# Alcohols

## Compounds with one or more -OH groups attached to a hydrocarbon group

Alcohols have one or more O–H functional groups.





Glycerol, HOCH<sub>2</sub>CH(OH)CH<sub>2</sub>OH

#### Other Common Alcohols



## Carboxylic Acids



## Fatty Acids





$$H = \begin{pmatrix} H \\ H \end{pmatrix} \bullet O \bullet$$

$$H = \begin{pmatrix} C \\ C \\ H \end{pmatrix} \begin{pmatrix} C \\ H \end{pmatrix} \begin{pmatrix} C \\ C \end{pmatrix} = \begin{pmatrix} C \\ C \end{pmatrix} \begin{pmatrix} C \\ C \end{pmatrix} \begin{pmatrix} C \\ C \end{pmatrix} = \begin{pmatrix} C \\ C \end{pmatrix} \begin{pmatrix} C \\ C \end{pmatrix}$$

Stearic acid, CH<sub>3</sub>(CH<sub>2</sub>)<sub>16</sub>CO<sub>2</sub>H

#### Ethers

Two hydrocarbon groups surrounding an oxygen atom

Diethyl ether, CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>

### Aldehyde



2-methylbutanal, CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CHO

#### Ketones

The R's must be hydrocarbon groups. They cannot be hydrogen atoms.

2-propanone (acetone), CH<sub>3</sub>COCH<sub>3</sub>

#### **Esters**



The R' must be a hydrocarbon group. It cannot be a hydrogen atom.



Ethyl butanoate, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

# Amine

$$\begin{array}{c|cccc}
H & H \\
- & | \\
H & C - N - C - H \\
H & H & H \\
H & H - C - H \\
H$$

Trimethylamine, (CH<sub>3</sub>)<sub>3</sub>N

### More Amines



# Amides





Ethanamide (acetamide), CH<sub>3</sub>CONH<sub>2</sub>

## Difunctional Compounds - GABA







### Example 1



 $CH_3CH_2CH_2CH_2CH_2CH_2CH_3$ or  $CH_3(CH_2)_3O(CH_2)_3CH_3$ 



## Example 2



CH<sub>3</sub>C(CH<sub>3</sub>)CHCH<sub>2</sub>CH<sub>3</sub>



### Example 3







