Chapter Map

Nuclear model of the atom (Section 3.4) → Nuclides
 ↓
Electrostatic force → Nuclear stability
 ↓
Strong force → Band of stability
 ↓
Radioactive decay → Effect on the body
 ↓
Radiative decay series → Writing nuclear equations
 ↓
Uses → Other uses
 ↓
Medical uses → Radiocarbon dating
 ↓
Fission → Fusion

Radioactive decay series
 ↓
Half-life
 ↓
Drawing nuclide symbols

Alpha emission → Beta emission → Positron emission → Electron capture
 ↓
Gamma emission
 ↓
Radiant energy (Section 4.1)

Excited states and ground states (Section 4.2)

Kinetic energy and potential energy (Section 4.1)

Stability, work, and potential energy (Section 4.1)

Law of conservation of energy (Section 4.1)
Nuclides

- **Nuclide** = a particular type of nucleus, characterized by a specific atomic number and nucleon number.
- **Nucleon number** or **mass number** = the number of **nucleons** (protons and neutrons) in the nucleus of a nuclide.
Nuclide Symbolism

Mass number (nucleon number)

Atomic number Element symbol

A
Z
X
Nuclear Stability

- **Electrostatic force** = the force that causes opposite electrical charges to attract each other.
- **Strong force** = the force between nucleons (protons and neutrons).
- Neutrons increase the attraction from the strong force without increasing electrostatic repulsion between nucleons.
Band of Stability
Alpha Emission

\[^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He \]

Two protons and two neutrons lost

The protons and neutrons leave as an alpha particle.

Energy
Beta Emission

\[^{131}_{53}\text{I} \rightarrow ^{131}_{54}\text{Xe} + ^{0}_{-1}\text{e} \]

A neutron becomes a proton (which stays in the nucleus) and an electron (which is ejected from the atom).
\[
\frac{40}{19} K \rightarrow \frac{40}{18} Ar + \frac{0}{+1} e^+
\]

A proton becomes a neutron (which stays in the nucleus) and a positron (which is ejected from the atom).
Electron Capture

\[^0_{-1}e + ^{125}_{53}\text{I} \rightarrow ^{125}_{52}\text{Te} \]

An electron combines with a proton to form a neutron.

Energy
\[^{137}_{55} \text{Cs} \rightarrow ^{137}_{56} \text{Ba}^* + ^0_{-1} \text{e} \rightarrow ^{137}_{56} \text{Ba} + \gamma\text{-photon} \]

Excited state

Beta emission

Gamma photon
• Nuclear reactions involve changes in the nucleus, whereas chemical reactions involve the loss, gain, and sharing of electrons.

• Different isotopes of the same element may undergo very different nuclear reactions, even though an element’s isotopes all share the same chemical characteristics.
• Unlike chemical reactions, the rates of nuclear reactions are unaffected by temperature, pressure, and the presence of other atoms to which the radioactive atom may be bonded.

• Nuclear reactions, in general, give off much more energy than chemical reactions
Nuclear Equations

Alpha emission

$$\begin{align*}
\text{mass number} & \quad 238 & \quad 234 & + & 4 & = & 238 \\
\text{atomic number} & \quad 92 & \quad 90 & + & 2 & = & 92 \\
\frac{238}{92}\text{U} & \quad \longrightarrow & \quad \frac{234}{90}\text{Th} & + & ^{4}_2\text{He} \\
\end{align*}$$

Beta emission

$$\begin{align*}
\text{mass number} & \quad 131 & \quad 131 & + & 0 & = & 131 \\
\text{atomic number} & \quad 53 & \quad 54 & + & (-1) & = & 53 \\
\frac{131}{53}\text{I} & \quad \longrightarrow & \quad \frac{131}{54}\text{Xe} & + & ^{0}_{-1}\text{e} \\
\end{align*}$$

Positron emission

$$\begin{align*}
\text{mass number} & \quad 40 & \quad 40 & + & 0 & = & 40 \\
\text{atomic number} & \quad 19 & \quad 18 & + & 1 & = & 19 \\
\frac{40}{19}\text{K} & \quad \longrightarrow & \quad \frac{40}{18}\text{Ar} & + & ^{0}_{+1}\text{e} \\
\end{align*}$$

Electron capture

$$\begin{align*}
\text{mass number} & \quad 0 & \quad 125 & = & 125 & = & 125 \\
\text{atomic number} & \quad -1 & \quad 53 & = & 52 & = & 52 \\
\frac{0}{-1}\text{e} & \quad + & \quad \frac{125}{53}\text{I} & \quad \longrightarrow & \quad \frac{125}{52}\text{Te} \\
\end{align*}$$
General Nuclear Equations

Alpha emission \[\frac{A}{Z} X \rightarrow \frac{A-4}{Z-2} Y + \frac{4}{2} \text{He} \]

Beta emission \[\frac{A}{Z} X \rightarrow Z+1 Y + \frac{0}{-1} e \]

Positron emission \[\frac{A}{Z} X \rightarrow Z-1 Y + \frac{0}{+1} e \]

Electron capture \[\frac{0}{-1} e + \frac{A}{Z} X \rightarrow \frac{A}{Z-1} Y \]
Half-life = the time it takes for one-half of a sample to disappear.
Ionizing Radiation

- All of the forms of radioactive emissions can lead to the formation of ions.

The energy lost to deceleration of beta particles is emitted in the form of X-rays called "bremsstrahlung," which translates to "braking radiation."
Radiation Effect on Body

• Radioactive emissions ionize atoms and molecules. This also leads to free radicals (particles with unpaired electrons).

\[
\begin{align*}
 H_2O & \rightarrow H_2O\cdot^+ + e^- \\
 H_2O\cdot^+ + H_2O & \rightarrow H_3O^+ + \cdot OH \\
 H_2O + e^- & \rightarrow H\cdot + OH^-
\end{align*}
\]

• These reactive particles react with important substances in the body, leading to immediate damage and delayed problems, such as cancer.
Effects on Body from Inside and Outside

- **Internal emitters** = emitters of alpha and weak beta particles
 - Cannot penetrate dead outer layer of skin,
 - Dangerous if inside the body (e.g. Pu-239)

- **External emitters** = emitters of gamma rays, strong beta particles, or neutrons
 - Dangerous from outside the body

http://preparatorychemistry.com/radioactivity.html
Relative Biological Effectiveness

- The ratio of biological effectiveness of one type of ionizing radiation relative to another, given the same amount of absorbed energy.

<table>
<thead>
<tr>
<th>Type</th>
<th>RBE (QF = quality factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-rays</td>
<td>1</td>
</tr>
<tr>
<td>γ-rays</td>
<td>1</td>
</tr>
<tr>
<td>β-particles</td>
<td>1-3</td>
</tr>
<tr>
<td>α-particles</td>
<td>5-20</td>
</tr>
<tr>
<td>neutrons</td>
<td>5-20</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/Relative_Biological_Effectiveness
• **Physical dose** = energy absorbed per kg of tissue:
 - 1 rad = 100 erg/g = 0.01 Gy
 - 1 Gray (Gy) = 1 J/kg = 100 rad

• **Biological dose** = physical dose × biological effectiveness:
 - QF = Quality Factor
 = RBE = relative biological effectiveness
 - 1 rem = 1 rad × (QF = 1)
 - ? rem = # rad × QF
 - 1 Sievert (Sv) = 1 Gy × (QF = 1) = 100 rem
 - ? Sv = # Gy × QF
<table>
<thead>
<tr>
<th>Sv</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0.25</td>
<td>change in blood counts</td>
</tr>
<tr>
<td>> 0.50</td>
<td>temporary sterility</td>
</tr>
<tr>
<td>1-2</td>
<td>vomiting, hair loss, etc.</td>
</tr>
<tr>
<td>2-3</td>
<td>5-35% fatalities in 30 d</td>
</tr>
<tr>
<td>> 3</td>
<td>permanent sterility</td>
</tr>
<tr>
<td>4-5</td>
<td>50% fatalities in 30 d (LD$_{50/30}$)</td>
</tr>
<tr>
<td>6-8</td>
<td>95% fatalities in 30 d</td>
</tr>
<tr>
<td>>10</td>
<td>death in 10 d</td>
</tr>
<tr>
<td>> 50</td>
<td>death in 2 d</td>
</tr>
<tr>
<td>> 100</td>
<td>immediate death</td>
</tr>
<tr>
<td>Dose (Sv)</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>98 nSv</td>
<td>banana equivalent dose, a whimsical unit of radiation</td>
</tr>
<tr>
<td>0.25 µSv</td>
<td>U.S. limit on effective dose from a single airport security screening</td>
</tr>
<tr>
<td>5 to 10 µSv</td>
<td>one set of dental X-rays</td>
</tr>
<tr>
<td>80 µSv</td>
<td>average dose to people living within 16 km of Three Mile Island accident</td>
</tr>
<tr>
<td>0.4 to 0.6 mSv</td>
<td>two-view mammogram, using weighting factors updated in 2007</td>
</tr>
<tr>
<td>2 to 7 mSv</td>
<td>barium fluoroscopy</td>
</tr>
<tr>
<td>10 to 30 mSv</td>
<td>single full-body CT scan</td>
</tr>
<tr>
<td>68 mSv</td>
<td>estimated maximum dose to evacuees who lived closest to the Fukushima I nuclear accidents</td>
</tr>
<tr>
<td>0.67 Sv</td>
<td>highest dose received by a worker responding to the Fukushima emergency</td>
</tr>
</tbody>
</table>

Chronic Dose Examples

1 mSv/yr ICRP recommended maximum for artificial irradiation of the public, excluding medical and occupational exposures.

2.4 mSv/yr Natural background radiation, global average

24 mSv/yr Natural background radiation at airline cruise altitude

9 Sv/yr NRC definition of a high radiation area in a nuclear power plant, warranting a chain-link fence

>90 kSv/yr most radioactive hotspot found in Fukushima I in areas normally accessible to workers

2.3 MSv/yr typical PWR spent fuel bundle, after 10 year cool down, no shielding

Uses for Radioactive Nuclides

- Cancer radiation treatment
- Computer imaging techniques
- Radiocarbon dating
- Smoke detectors
- Food irradiation
- Radioactive tracers
• Protons act like tiny magnets.
• When patients are put in the strong magnetic field, the proton magnets in their hydrogen atoms line up either with or against the field (called parallel and anti-parallel).

parallel + radio wave photons \rightarrow anti-parallel
anti-parallel \rightarrow parallel + emitted energy

• Emitted energy is detected by scanners placed around the patient’s body.
• Soft tissues contain a lot of water (with a lot of hydrogen atoms) and bones do not, so the MRI process is especially useful for creating images of the soft tissues of the body.

• Hydrogen atoms absorb and re-emit radio wave photons in different ways depending on their environment, so the computer analysis of the data yields images of the soft tissues.
A solution containing a positron-emitting substance is introduced into the body. The positrons collide with electrons, and the two species annihilate each other, creating two gamma photons that move apart in opposite directions.

\[e^+ \rightarrow \text{Positron-electron collision} \rightarrow e^- \]

followed by the creation of two gamma-ray photons

\[\gamma\text{-ray} \rightarrow \gamma\text{-ray} \]
• The gamma photons are detected and the data analyzed by a computer to yield images.
• Different nuclides are used to study different parts of the body.
 – Fluorine-18 for bones
 – Glucose with carbon-11 for the brain
[If not for radiocarbon dating,] we would still be floundering in a sea of imprecisions sometimes bred of inspired guesswork but more often of imaginative speculations.

Desmond Clark, Anthropologist

- Dating to about 50,000 years
- Natural carbon is 98.89% carbon-12, 1.11% carbon-13, and 0.000000000010% carbon-14, which come from

\[
\frac{^{14}_7}{^8} \text{N} + \frac{^1}{^0} \text{n} \rightarrow \frac{^{14}_6}{^6} \text{C} + \frac{^1}{^1} \text{H}
\]
Radiocarbon Dating (2)

- Carbon-14 is oxidized to CO$_2$, which is then converted into substances in plants, which are then eaten by animals.
- Carbon-14 is a beta emitter with a half-life of 5730 years (±40 years), so as soon as it becomes part of a plant or animal, it begins to disappear.

\[
\frac{14}{6}C \rightarrow \frac{14}{7}N + _{-1}^0 e
\]
• When alive, intake of ^{14}C balances the decay, so ratio of ^{14}C to ^{12}C remains constant at about 1 in $1,000,000,000,000,000$.

• When the plant or animal dies, it stops taking in fresh carbon, but the ^{14}C it contains continues to decay. Thus the ratio of ^{14}C to ^{12}C drops steadily.

• The $^{14}\text{C}/^{12}\text{C}$ ratio in the sample is used to calculate its age.
• Assuming that the $^{14}\text{C}/^{12}\text{C}$ ratio has been constant over time, if the $^{14}\text{C}/^{12}\text{C}$ ratio in a sample is one-half of the ratio found in the air today, the object would be about 5730 years old. A $^{14}\text{C}/^{12}\text{C}$ ratio of one-fourth of the ratio found in the air today would date it as 11,460 years old (2 half-lives), etc.

• It’s not that simple…the percentage of ^{14}C in the air varies due to factors such as volcanoes and natural variations in cosmic radiation.
Tree rings show that the $^{14}\text{C}/^{12}\text{C}$ ratio has varied by about ±5% over the last 1500 years.

Very old trees, such as the bristlecone pines in California, yield calibration curves for radiocarbon dating to about 10,000 years.

These calibration curves are now used to get more precise dates for objects.
• **Binding energy** = the amount of energy released when a nucleus is formed.

• Binding energy per nucleon generally increases from small atoms to atoms with a mass number around 56. Thus fusing small atoms to form medium-sized atoms (nuclear fusion) releases energy.

• Binding energy per nucleon generally decreases from atoms with a mass number around 56 to larger atoms. Thus splitting large atoms to form medium-sized atoms (nuclear fission) also releases energy.
Binding Energy per Nucleon

The graph shows the binding energy per nucleon as a function of mass number (A). The binding energy per nucleon is given in MeV (MeV/cadmium). The graph includes data points for various isotopes, such as 12C, 16O, 4He, 2H, 20Ne, 56Fe, 90Sr, 95Kr, 138Ba, 144Xe, 235U, and 239Pu. The binding energy per nucleon increases initially as the mass number increases, reaches a peak around the iron region, and then decreases as the mass number further increases.
Nuclear Fission

\[
{}^{235}_{92}\text{U} + {}^{1}_0\text{n} \rightarrow {}^{236}_{92}\text{U} \rightarrow {}^{138}_{56}\text{Ba} + 3 {}^{95}_{36}\text{Kr} + 3 {}^{1}_0\text{n} + \text{Energy}
\]
Chain Reaction

$^{235}_{92}\text{U}$ → fission products $→ 2^{235}_{92}\text{U}$

$→ 2^{235}_{92}\text{U}$

$→ 2^{235}_{92}\text{U}$

fission products

$→ 2^{235}_{92}\text{U}$

$→ 2^{235}_{92}\text{U}$

fission products

$→ 2^{235}_{92}\text{U}$

$→ 2^{235}_{92}\text{U}$

fission products
• Fission reactions provide heat, which is used to boil water to create steam, which turns a steam turbine to generate electricity.

• Get heat from
 – Fission reaction
 – Radioactive decay of fission products
 – Gamma rays released converted into heat
Nuclear Power Plant

• To get a sustained chain reaction, the percentage of ^{235}U must be increased over what is found in nature, in part because the unfissionable ^{238}U absorbs too many neutrons, and a sustained fission reaction is not reached.

\[^{238}_{92}\text{U} + 1^0\text{n} \rightarrow ^{239}_{92}\text{U} \]
\[^{239}_{92}\text{U} \rightarrow ^{239}_{93}\text{Np} + ^0_{-1}\text{e} \]
\[^{239}_{93}\text{Np} \rightarrow ^{239}_{94}\text{Pu} + ^0_{-1}\text{e} \]

• Fuel rods
 – A typical 1000-megawatt power plant will have from 90,000 to 100,000 kg of enriched fuel packed in 100 to 200 zirconium rods about 4 meters long.
Thermal Reactors

- Thermal reactors use slowed or thermal neutrons.
- Almost all current reactors are of this type.
- A moderator slows neutrons until their kinetic energy approaches the average kinetic energy of the surrounding particles.
 - Moderator can be regular (light) water (74.8% of the world's reactors), solid graphite (20% of reactors) and heavy water (dueterium oxide - 5% of reactors).
- Thermal neutrons have a far higher probability of fissioning the fissile nuclei (235U, 239Pu, and 241Pu), and a relatively lower probability of neutron capture by 238U compared to the faster neutrons that originally result from fission, allowing use of low-enriched uranium fuel. The moderator is often also the coolant, usually water under high pressure to increase the boiling point.
Thermal Reactor
Fast Neutron Reactors

- Use fast neutrons to cause fission in their fuel.
- Do not have a neutron moderator, and use less-moderating coolants.
- Requires the fuel to be more highly enriched in fissile material (about 20% or more) due to the relatively lower probability of fission versus capture by U-238.
- More difficult to build and more expensive to operate.
- Less common than thermal reactors in most applications.
Nuclear Power Plant

• Control Rods
 – Substances, such as cadmium or boron, that absorb neutrons.
 – Control rate of chain reaction
 – Dropped at first sign of trouble to stop fission reaction

• Facility includes instrumentation to monitor and control the reactor, radiation shielding, and a containment building.
Diablo Canyon Nuclear Plant

- At Avila Beach in San Luis Obispo County, California.
- Two 1,100 MWe (MW of electrical energy produced) pressurized-water nuclear reactors operated by Pacific Gas & Electric produce about 18,000 GW·h of electricity annually, supplying the electrical needs of more than 2.2 million people.
Diablo Canyon Nuclear Plant

• Built directly over a geological fault line, and is located near a second fault.
• Originally designed to withstand a 6.75 magnitude earthquake, later upgraded to withstand a 7.5 quake.
• The Nuclear Regulatory Commission's estimate of the risk each year of an earthquake intense enough to cause core damage to the reactor at Diablo Canyon was 1 in 23,810, according to an NRC study published in August 2010.
• In April 2011, in the wake of the Fukushima nuclear incident in Japan, PG&E asked the NRC not to issue license renewals until PG&E can complete new seismic studies, which are expected to take at least three years.
Seismic Tests

- PG&E wants to use big air guns to emit strong sound waves into a large, near-shore area that includes parts of marine reserves to make three-dimensional maps of fault zones, some of which were discovered in 2008, near its Diablo Canyon nuclear power plant.
- But a state study — mandated by Assembly Bill 1632, which was signed into law in 2006 — found the project is likely to have “unavoidable adverse effects” on marine life and the environment. Biologists, environmental groups and fishermen have opposed using the high-energy air guns, saying the blasts have the potential to harm endangered whales, California sea otters and other creatures frequenting these waters.

Uranium is mined, enriched and manufactured to make nuclear fuel (1), which is delivered to a nuclear power plant. After usage in the power plant the spent fuel might be delivered to a reprocessing plant (if fuel is recycled) (2) or to a final repository (if no recycling is done) (3) for geological disposition. In reprocessing, 95% of spent fuel can be recycled to be returned to usage in a nuclear power plant (4).

http://en.wikipedia.org/wiki/Nuclear_fuel_cycle
Uranium Ore

• Uranium is one of the more common elements in the Earth's crust, some 40 times more common than silver and 500 times more common than gold.

• The primary uranium ore is uraninite, which is largely UO$_2$, but also contains UO$_3$ and oxides of other metals. It is commonly known as pitchblende.
Uranium Enrichment

• Uranium in uranium ore is about 99.3% ^{238}U, which is not fissionable, and 0.7% ^{235}U, which is fissionable.

• Needs to be enriched in ^{235}U to varying degrees (depending on the reactor design) to be useful in a nuclear power plant.

Highly enriched uranium metal
Uranium Enrichment

• In a series of steps, the uranium in uranium ore is converted into uranium hexafluoride, UF$_6$.
• It sublimes (goes directly from solid to gas) at 56.5 °C.
• The UF$_6$ can be enriched in 235UF$_6$ by either gas diffusion (first generation) or using gas centrifuges (second generation), which requires less energy.
Gas Centrifuge

- Creates a strong centrifugal force so that the heavier gas molecules containing ^{238}U move toward the outside of the cylinder and the lighter gas molecules rich in ^{235}U collect closer to the center.

- A large number of rotating cylinders connected in series and parallel formations.

The bottom of the rotating cylinder can be heated, producing convection currents that move the ^{235}U up the cylinder, where it can be collected.
Depleted Uranium

• Most of the depleted uranium produced is stored as uranium hexafluoride, DUF₆, in steel cylinders in open air yards close to enrichment plants.
Spent Fuel Rods

- Fission products that emit beta and gamma radiation
- Some fissionable U-235 and Pu-239
- Alpha emitters, such as uranium-234, neptunium-237, plutonium-238 and americium-241
- Sometimes some neutron emitters such as californium (Cf).
Nuclear Reprocessing

• Process to chemically separate and recover fissionable plutonium and uranium from irradiated nuclear fuel.

• Purposes
 – Originally reprocessing was used solely to extract plutonium for producing nuclear weapons.
 – The reprocessed plutonium can be recycled back into fuel for nuclear reactors.
 – The reprocessed uranium, which constitutes the bulk of the spent fuel material, can in principle also be re-used as fuel, but that is only economic when uranium prices are high.

http://en.wikipedia.org/wiki/Nuclear_reprocessing
Nuclear Reprocessing

• Reprocessing of civilian fuel has long been employed in France, the United Kingdom, Russia, Japan, and India.
• Briefly done at the West Valley Reprocessing Plant in the United States.
• In October 1976, concerned about nuclear weapons proliferation, President Gerald Ford indefinitely suspended the commercial reprocessing and recycling of plutonium in the U.S.
• In March 1999, the U.S. Department of Energy (DOE) reversed its policy and signed a contract with a consortium to design and operate a mixed oxide (MOX) fuel fabrication facility. There are no customers yet.
Liquid-Liquid Extraction

Typically performed in a separatory funnel:

1. Add clean immiscible aqueous solvent phase.
2. Shake or stir to allow molecules to partition.
3. Phases settle and separate with gravity.

Polar compounds will congregate in “aqueous” layer.
Non-polar compounds will congregate in “organic” layer.
PUREX Process

• Dissolve in 7 M HNO$_3$.
• Filter out solids
• Combine with 30% tributyl phosphate (TBP) to form UO$_2$(NO$_3$)$_2$·2TBP and PuO$_2$(NO$_3$)$_2$·2TBP complexes.
• Extract with an organic solvent, such as kerosene.
 – UO$_2$(NO$_3$)$_2$·2TBP and PuO$_2$(NO$_3$)$_2$·2TBP complexes in nonpolar organic solvent
 – Fission products, and transuranium elements americium and curium remain in the aqueous phase.

http://en.wikipedia.org/wiki/PUREX
Separation of U, Pu, and Fission Products

On to Uranium purification

On to Plutonium purification

U and Pu complexes

Nonpolar solvent Layer

Aqueous Layer

Fission products, minor actinides: discarded as “high level waste”
• Plutonium is separated from uranium in a separate extraction by treating the kerosene solution with aqueous iron(II) sulfamate, Fe\((SO_3NH_2)_2\), which reduces the plutonium to the +3 oxidation state. The plutonium passes into the aqueous phase.

• Variations on the PUREX process have been developed.

http://en.wikipedia.org/wiki/PUREX
One Sign of Reprocessing of Nuclear Wastes

- 2002 – China shipped about 20 tons of tributyl phosphate (TBP) to North Korea.
- Considered to be sufficient to extract enough material for three to five nuclear weapons.
Nuclear Waste Storage and Disposal

- Nuclides of special concern
 - Tc-99 (half-life 220,000 years) and I-129 (half-life 17 million years), which dominate spent fuel radioactivity after a few thousand years.
 - Np-237 (half-life two million years) and Pu-239 (half-life 24,000 years).

- Needs treatment, followed by a long-term management strategy involving storage, disposal, or transformation of the waste into a non-toxic form.

- Governments around the world are considering a range of waste management and disposal options, though there has been limited progress toward long-term waste management solutions.

Nuclear Waste Storage/Disposal Possibilities

- "Long term above ground storage", not implemented.
- "Disposal in outer space", not implemented.
- "Deep borehole disposal", not implemented.
- "Rock-melting", not implemented.
- "Disposal at subduction zones", not implemented.
- "Ocean disposal", done by USSR, UK, Switzerland, USA, Belgium, France, Netherland, Japan, Sweden, Russia, Germany, Italy and South Korea. (1954–93) It's not permitted by international agreements.
- "Sub seabed disposal", not implemented, not permitted by international agreements.
- "Disposal in ice sheets", rejected in Antarctic Treaty
- "Direct injection" of liquid waste, done by USSR and USA.

Yucca Mountain Nuclear Waste Repository

- Deep geological repository storage facility for spent nuclear reactor fuel and other high level radioactive waste,
- Approved in 2002 by the United States Congress.
- Project was defunded in 2010.
- The US Government Accountability Office stated that the closure was for political, not technical or safety reasons.
Yucca Mountain Nuclear Waste Repository

- United States without any long term storage site for high level radioactive waste, currently stored on-site at various nuclear facilities around the country

http://en.wikipedia.org/wiki/Yucca_Mountain_nuclear_waste_repository
The Blue Ribbon Commission established by the Secretary of Energy released its final report on January 26, 2012. It expressed urgency to find a consolidated, geological repository, but also that any future facility should have input from the citizens around it.

http://en.wikipedia.org/wiki/Yucca_Mountain_nuclear_waste_repository
Status of Nuclear Power

- 437 nuclear power plants in operation
- 371.762 GW$_e$ total installed capacity
- 64 Nuclear power plants under construction.

http://www.iaea.org/pris/
Total Number of Reactors: 437

Country Name

- UNITED STATES OF AMERICA
- FRANCE
- JAPAN
- RUSSIA
- KOREA, REPUBLIC OF
- CANADA
- INDIA
- CHINA
- UNITED KINGDOM
- UKRAINE
- SWEDEN
- GERMANY
- SPAIN
- BELGIUM
- CZECH REPUBLIC
- SWITZERLAND
- FINLAND
- HUNGARY
- SLOVAKIA
- PAKISTAN
- ARGENTINA
- BRAZIL
- BULGARIA
- MEXICO
- ROMANIA
- SOUTH AFRICA
- ARMENIA
- IRAN, ISLAMIC REPUBLIC OF
- NETHERLANDS
- SLOVENIA

Number of Reactors

http://www.iaea.org/pris/
United States

- 104 nuclear power plants
- 1 under construction
- 7.9×10^5 GWh in 2011

http://www.iaea.org/pris/
Changes in sources of electricity supply, 2000-09

Note: Non-hydro RES = renewable energy sources other than hydropower. TWh = terawatt hours.

Investment Costs for Fossil and Nuclear Power

1.4: Investment cost of fossil and nuclear power

- Subcritical coal
- Supercritical coal
- Ultrasupercritical coal
- IGCC coal
- Nuclear
- Natural gas CCGT

USD/kW

Share of Nuclear Government RD&D Spending

1.8: Share of nuclear in government energy RD&D spending, 2010

- Japan: 55% nuclear RD&D spending, steady 56% share in 2000
- South Africa: 49% nuclear RD&D spending, down from 77% share in 2000
- France: 38% nuclear RD&D spending, down from 51% share in 2000
- Germany: 31% nuclear RD&D spending, steady 23% share in 2000
- Canada: 22% nuclear RD&D spending, up from 12% share in 2000
- United States: 19% nuclear RD&D spending
- Brazil: 12% nuclear RD&D spending

Nuclear Policy Post-Fukushima

1.9: Nuclear policy post-Fukushima

- **Belgium**: Phase out by 2025, a reduction from 5.9 GW nuclear capacity
- **Switzerland**: Phase out by 2034, a reduction from 3.2 GW nuclear capacity
- **Japan**: Announced intent to decrease dependence on nuclear energy
- **Germany**: Phase out by 2022, a reduction from 20.3 GW nuclear capacity

Changes to nuclear policy, No changes to nuclear policy, Delays to first nuclear power plants

Nuclear Annual Capacity Investment

1.10: Annual capacity investment

- Record since 1985 with 16 construction starts
- Only 4 construction starts in 2011

Nuclear Installed Capacity

1.11: Installed capacity and 2DS objectives

Source: IAEA

Reactors Under Construction

1.12: Reactors under construction, end 2011

Source: IAEA

Public Opinion of Nuclear Energy

Note: Countries included in survey data include France, Germany, India, Indonesia, Japan, Mexico, Russia, United Kingdom and the United States. Source: GlobalScan, 2011.

Carbon emissions from nuclear power

Sovacool life cycle study survey, 2008

- Front end, 25.09 g/kWh
- Construction, 8.20 g/kWh
- Operation, 11.58 g/kWh
- Back end, 9.20 g/kWh
- Decommissioning, 12.01 g/kWh

Total, 66.08 g/kWh

Mean value of carbon dioxide emissions from qualified life cycle studies among 103 surveyed. Includes results of 1997 Vattenfall study.
Lifecycle Greenhouse Gas Emission Estimates for Electricity Generators

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Estimate (g CO2/kWh<sub>e</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>2.5 MW offshore</td>
<td>9</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>3.1 MW reservoir</td>
<td>10</td>
</tr>
<tr>
<td>Wind</td>
<td>1.5 MW onshore</td>
<td>10</td>
</tr>
<tr>
<td>Biogas</td>
<td>Anaerobic digestion</td>
<td>11</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>300 kW run-of-river</td>
<td>13</td>
</tr>
<tr>
<td>Solar thermal</td>
<td>80 MW parabolic trough</td>
<td>13</td>
</tr>
<tr>
<td>Biomass</td>
<td>various</td>
<td>14-35</td>
</tr>
<tr>
<td>Solar PV</td>
<td>Polycrystaline silicon</td>
<td>32</td>
</tr>
<tr>
<td>Geothermal</td>
<td>80 MW hot dry rock</td>
<td>38</td>
</tr>
<tr>
<td>Nuclear</td>
<td>various reactor types</td>
<td>66</td>
</tr>
<tr>
<td>Natural gas</td>
<td>various combined cycle turbines</td>
<td>443</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>hydrogen from gas reforming</td>
<td>664</td>
</tr>
<tr>
<td>Diesel</td>
<td>various generator and turbine types</td>
<td>778</td>
</tr>
<tr>
<td>Heavy oil</td>
<td>various generator and turbine types</td>
<td>778</td>
</tr>
<tr>
<td>Coal</td>
<td>various generator types with scrubbing</td>
<td>960</td>
</tr>
<tr>
<td>Coal</td>
<td>various generator types without scrubbing</td>
<td>1050</td>
</tr>
</tbody>
</table>

Retiring Nuclear Power Plants

Impact of NPP Retirement on Carbon Emissions

*Data does not represent future growth in demand but only represents the increase in CO₂ emissions to replace what nuclear produces today.
Nuclear Fusion Powers the Sun

\[^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H} + 0_{+1}\text{e} \]

\[^{2}\text{H} + ^{1}\text{H} \rightarrow ^{3}\text{He} \]

\[^{3}\text{He} + ^{3}\text{He} \rightarrow ^{4}\text{He} + ^{1}\text{H} + ^{1}\text{H} \]