Chapter 2 The Structure of Matter and the Chemical Elements

An Introduction to Chemistry

By Mark Bishop

Chapter Map

Chemistry

The science that deals with the structure and behavior of matter

Scientific Models

- A model is a simplified approximation of reality.
- Scientific models are simplified but useful representations of something real.

Kinetic Molecular Theory

- All matter is composed of tiny particles.
- The particles are in constant motion.
- Increased temperature reflects increased motion of particles.
- Solids, liquids and gases differ in the freedom of motion of their particles and in how strongly the particles attract each other.

Solid

- Constant shape and volume
- The particles are constantly moving, colliding with other particles, and changing their direction and velocity.
- Each particle is trapped in a small cage whose walls are formed by other particles that are strongly attracted to each other.

The Nature of Solids

Liquid

- Constant volume but variable shape
- The particles are moving fast enough to break the attractions between particles that form the walls of the cage that surround particles in the solid form.
- Thus each particle in a liquid is constantly moving from one part of the liquid to another.

Liquids Particles move fast enough for

Evaporation

Gas

- Variable shape and volume
- Large average distances between particles
- Little attraction between particles
- Constant collisions between particles, leading to constant changes in direction and velocity

The Nature of Gases

Because particles are so far apart, there is usually no significant attraction between them.

Description of Solid

- Particles constantly moving.
- About 70% of volume occupied by particles...30% empty.
- Strong attractions keep particles trapped in cage.
- Constant collisions that lead to changes in direction and velocity.
- Constant volume and shape due to strong attractions and little freedom of motion.

Description of Liquid

- Particles constantly moving.
- About 70% of volume occupied by particles...30% empty
- Attractions are strong but not strong enough to keep particles from moving throughout the liquid.
- Constant collisions that lead to changes in direction and velocity.
- Constant volume, due to significant attractions between the particles that keeps the particles at a constant average distance, but not constant shape, due to the freedom of motion.

Description of Gas

- Particles constantly moving in straight-line paths
- About 0.1% of volume occupied by particles...99.9% empty.
- Average distance between particles is about 10 times their diameter.
- No significant attractions or repulsions.
- Constant collisions that lead to changes in direction and velocity.
- Variable volume and shape, due to lack of attractions and a great freedom of motion.

https://preparatorychemistry.com/KMT_Canvas.html

Separation of Salt Water

Distillation Water evaporates and water vapor travels through here. Salt water is placed in this flask and heated. Salt does not evaporate, so it remains here. Water is collected here.

118 Known Elements

- Many of these a very rare.
- 7 are found in nature but are radioactive.
- 28 are not natural on the earth.
 - –2 or 3 of these might be found in stars.

Group Numbers on the Periodic Table

Group Names

Metals, Nonmetals, and Metalloids

Characteristics of Metallic Elements

- Metals have a shiny metallic luster.
- Metals conduct heat well and conduct electric currents in the solid form.
- Metals are malleable.
 - For example, gold, Au, can be hammered into very thin sheets without breaking.

Classification of Elements

Solid, Liquid, and Gaseous Elements

Periods

K

Ва

Ra

Lu

5

Solids

Atoms

- Tiny...about 10⁻¹⁰ m
 - If the atoms in your body were 1 in. in diameter, you'd bump your head on the moon.
- Huge number of atoms in even a small sample of an element
 - 1/2 carat diamond has 5×10^{21} atoms...if lined up, would stretch to the sun.

Particles in the Atom

Neutron (n)

0 charge 1.00867 u in nucleus

Proton (p)

+1 charge 1.00728 u in nucleus

Electron (e⁻)

-1 charge 0.000549 u outside nucleus

The Electron

"If I seem unusually clear to you, you must have misunderstood what I said."

Alan Greenspan,

Head of the Federal Reserve Board

"It is probably as meaningless to discuss how much room an electron takes up as to discuss how much room a fear, an anxiety, or an uncertainty takes up."

> Sir James Hopwood Jeans, English mathematician, physicist and astronomer (1877-1946)

Electron Cloud for Hydrogen Atom

The negative charge is most intense at the nucleus and diminishes in intensity with increased distance from the nucleus.

https://preparatorychemistry.com/helium_atom_Canvas.html

Carbon Atom

6 protons

6 neutrons (in most carbon atoms)

6 electrons (in uncharged atom)

lons

- lons are charged particles due to a loss or gain of electrons.
- When particles lose one or more electrons, leaving them with a positive overall charge, they become *cations*.
- When particles gain one or more electrons, leaving them with a negative overall charge, they become anions.

Example lons

Isotopes

- Isotopes are atoms with the same atomic number but different mass numbers.
- Isotopes are atoms with the same number of protons and electrons in the uncharged atom but different numbers of neutrons.
- Isotopes are atoms of the same element with different masses.

Isotopes of Hydrogen

https://preparatorychemistry.com/Hydrogen_1_Canvas.html https://preparatorychemistry.com/Hydrogen_2_Canvas.html https://preparatorychemistry.com/Hydrogen_3_Canvas.html

Possible Discovery of Elements 113 and 115

- Dubna, Russia
- Dubna's Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory
- Bombarded a target enriched in americium, ²⁴³Am, with calcium atoms, ⁴⁸Ca.
- From analysis of decay products, they concluded that four atoms of element 115 were created.

Elements 113 and 115

- Created ²⁸⁸115, which lasted about 100 milliseconds...a very long time for this large an isotope.
- 288 115 emitted an α -particle, 4 He, to form 284 113.
- The results need to be confirmed.

Why try to make elements that last such a short time?

- To support theories of the nature of matter.
 - The standard model of the nature of matter predicts that elements with roughly 184 neutrons and 114 protons would be fairly stable. (See next slide.)
 - ²⁸⁸115, which lasted a relatively long time, has 115 protons and 173 neutrons.

Band of Stability

Why try to make elements that last such a short time? (cont.)

- The technology developed to make new elements is also being used for medical purposes.
 - Heavy-ion therapy as a treatment for inoperable cancers
 - Beams of carbon atoms shot at tumor.
 - Heavier particle beam is less likely to scatter.
 - Releases most of energy at end of path so easier to focus.

Effect on Chemical Changes

Electrons

- Can be gained, lost, or shared...actively participate in chemical changes
- Affect other atoms through their -1 charge

Protons

- Affect other atoms through their +1 charge
- Determine the number of electrons in uncharged atoms

Neutrons

 No charge...no effect outside the atom and no direct effect on the number of electrons.

Tin has ten natural isotopes.

To Describe Structure of Elements

- Noble gases atoms
- Other nonmetals molecules
 - Diatomic elements H₂, N₂, O₂, F₂, Cl₂, Br₂,
 I₂
 - S₈, Se₈, P₄
 - C(diamond) huge molecules
- Metallic elements cations in a sea of electrons

To Describe Structure of Elements (2)

- Gases H₂, N₂, O₂, F₂, Cl₂, He, Ne,Ar, Kr, and Xe
- Liquids Br₂ and Hg
- Solids the rest
- Standard description of (1) solid, (2) liquid, (3) gas, or (4) metal.

Helium Gas, He

Hydrogen, H₂, Molecule

Hydrogen nuclei

The two electrons generate a charge cloud surrounding both nuclei.

Space-filling model Emphasizes individual atoms

Ball-and-stick model Emphasizes bond

Hydrogen Gas, H₂

Bromine Liquid, Br₂

Iodine Solid

https://preparatorychemistry.com/element_properties_Canvas.html

Typical Metallic Solid and Its "Sea of Electrons"

Sea-of-Electrons Model