Chapter 5
Acids, Bases, and
Acid-Base Reactions

An Introduction to Chemistry by Mark Bishop

Chapter Map

Arrhenius Acid Definition

- An acid is a substance that generates hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$ (often described as H^{+}), when added to water.
- An acidic solution is a solution with a significant concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions.

Characteristics of Acids

- Acids have a sour taste.
- Acids turn litmus from blue to red.
- Acids react with bases.

Strong Acid and Water

When HCl dissolves in water, hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, and chloride ions, Cl^{-}, ions form.

This proton, H^{+}, is transferred to a water molecule.

$+\quad \mathrm{H}_{2} \mathrm{O}(l)$
\rightarrow
$\mathrm{Cl}^{-}(a q)$
$+$
$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

Solution of a Strong Acid

Hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, surrounded by the negatively charged oxygen ends of water molecules.

Types of Acids

- Binary acids have the general formula of HX(aq)
- $\mathrm{HF}(a q)$ and $\mathrm{HCl}(a q)$
- Oxyacids have the general formula $\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$. $-\mathrm{HNO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
- Organic acids, which are also called carbon-based acids or carboxylic acids $-\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Acetic Acid

Monoprotic and Polyprotic Acids

- If each molecule of an acid can donate one hydrogen ion, the acid is called a monoprotic acid.
- If each molecule can donate two or more hydrogen ions, the acid is a polyprotic acid.
- A diprotic acid, such as sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, has two acidic hydrogen atoms.
- Some acids, such as phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, are triprotic acids.

Weak Acid and Water

Acetic acid reacts with water in a reversible reaction, which forms hydronium and acetate ions.

$\stackrel{\text { Indicates a }}{\text { reversible }}$
reaction
$\stackrel{\rightharpoonup}{\rightleftharpoons}$
\rightleftharpoons

Solution of Weak Acid

In a typical acetic acid solution, there are about 250 times as many uncharged acetic acid molecules, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, as acetate ions, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$.

Hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, surrounded by the negatively charged oxygen ends of water molecules.

- Weak Acid = due to a reversible reaction with water, generates significantly less than one $\mathrm{H}_{3} \mathrm{O}^{+}$for each molecule of acid added to water.
- Strong Acid = due to a completion reaction with water, generates close to one $\mathrm{H}_{3} \mathrm{O}^{+}$for each acid molecule added to water.

Strong and Weak Acids

For every 250 molecules of the weak acid acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, added to water, there are about
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$
\rightleftharpoons
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}(a q)$
$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

249 uncharged acetic acid molecules
One acetate ion
One hydronium ion
-2
$\infty \infty \infty \infty$
 Now

 - $2+\infty+\infty+\infty$

 \& \& \& $\infty \infty \infty \infty$

For every 250 molecules of the strong acid hydrochloric acid, HCl , added to water, there are about

$\mathrm{HCl}(\mathrm{g})$	+	$\mathrm{H}_{2} \mathrm{O}(l)$	\rightarrow	$\mathrm{Cl}^{-}(a q)$	+	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
	mo					

O	
- - - - - - - -	
)	
)	
000	

Acid Animation and Tutorial

- There is an animation on the textbook's website that will give you a better understanding of weak and strong acids.
https://preparatorychemistry.com/acids_Canvas.html

Sulfuric Acid

$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})
$$

$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

Strong

Binary acid

Oxyacid

Weak
Hydrofluoric acid acid, $\mathrm{HCl}(\mathrm{aq})$
nitric acid, HNO_{3} other acids with sulfuric acid, $\quad \mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$

Organic acid
none
acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

- Large quantities of sulfur dioxide, SO_{2}, are formed and released into the air from burning sulfur-containing substances in coal in power plants and in metal ores in smelting, which involves heating of metal ores to extract metals.
- SO_{2} forms sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, in the atmosphere, which can dissolve in the clouds and form acid rain.
- Sulfuric acid forms hydronium ions.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-} \\
& \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}
\end{aligned}
$$

1995 SO2 Emissions

- The combination of air at high temperature, perhaps with a metal to act as a catalyst, leads to the formation of nitrogen monoxide, NO , and nitrogen dioxide, NO_{2}, often summarized as "NOx".
- Transportation and industry are major sources of nitrogen oxides.
- The NO_{2} forms nitric acid in the atmosphere, which is a strong acid.

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}
$$

Acids and Acid Precursors

- Sulfur dioxide $\left(\mathrm{SO}_{2}\right) \rightarrow$ sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
- primarily from coal burning and smelting
- Nitrogen oxides $\left(\mathrm{NO}, \mathrm{NO}_{2}\right) \rightarrow$ nitric acid $\left(\mathrm{HNO}_{3}\right)$
- primarily from high-temperature combustion
- Formic and acetic acids $\left(\mathrm{HCO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$
- primarily from biomass burning, mostly in Africa and South America
- Carbonic acid $\left(\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}\right)$
- from CO_{2} in atmosphere, responsible for acidity of pristine precipitation
- The pH scale can be used to describe the acidity and basicity of dilute solutions of acid and base.
- Acidic solutions have pHs from 0 to 7 .
- The lower the pH , the more acidic the solution, and a decrease in one pH unit is associated with an increase of 10-times the hydronium ion concentration.
- Therefore, small changes in pH reflect significant changes in $\mathrm{H}_{3} \mathrm{O}^{+}$concentration.

Pristine Rain and Acid Rain

- Due to acids dissolved in natural rain, such as the carbonic acid that forms when CO_{2} dissolves in water, pristine or unpolluted rain has a pH of about 5.6.
- Acid rain can have a pH close to 4 .

Rain pH 1999

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Impacts

- Lowering pH can damage freshwater ecosystems, forests, agriculture, human health, buildings, and other property.

Damage to Human Health

- More acidic rain dissolves more toxic metals in the soil, which increases the level of these metals in water systems, leading to consumption of fish with elevated concentrations of toxic metals (Al, $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Hg}, \mathrm{Cu}, \mathrm{Zn}$).
- Corrosion of pipes results in excess levels of $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}$ in drinking water.

Damage to Buildings and Property

- Acids etch glass, damage roofing and other building materials, and damage plastics and paint (especially automotive paint).
- Carbonate stones (marble, limestone, etc.), cement, mortar are dissolved by acids:

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \quad \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
\end{aligned}
$$

Damage to Art

The statues on the left were transported by William Randolph Hearst to his home in San Simeon, California. Because it so rarely rains there, and because San Simeon is far from any major sources of pollution, these statues are in much better condition than the similar statues found elsewhere, such as the one on the right, that have been damaged by acid rain.

Effects on Metals

- Acid rain speeds the corrosion of metals.

Automobile Catalytic Converters

- Catalytic converters can convert up to 95\% of the NO and NO_{2} back to nitrogen and oxygen.

$$
2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2} \quad 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{O}_{2}
$$

Mitigation - Sulfur

- Switch from coal to natural gas (0.001\% S)
- Switch to low-sulfur coal
- Power plant scrubbers can use CaO (lime), CaCO_{3} (limestone), or $\mathrm{Ca}(\mathrm{OH})_{2}$ (lime) to remove SO_{2} from the stack gases.
- Due largely to the US EPA's Acid Rain Program, the U.S. had a 33\% decrease in SO_{2} emissions between 1983 and 2002.

$1995 \mathrm{SO}_{2}$

Emissions

$2004 \mathrm{SO}_{2}$
 Emissions

Two Types of Acids

- Binary acids, such as hydrochloric acid, $\mathrm{HCl}(a q)$.
- Oxyacids, such as sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, and nitric acid, HNO_{3}.

Names and Formulas of Binary Acids

- Names have the general form of hydro(root)ic acid, such as hydrochloric acid.
- The formulas are usually followed by (aq), such as $\mathrm{HCl}(a q)$.

Binary Acids

Formula	Named as Binary Covalent Compound	Acid Formula	Named as Binary acid
HF or $\mathrm{HF}(g)$	hydrogen monofluoride or hydrogen fluoride	$\mathrm{HF}(a q)$	hydrofluoric acid
HCl or $\mathrm{HCl}(g)$	hydrogen monochloride or hydrogen chloride	$\mathrm{HCl}(a q)$	hydrochloric acid
HBr or $\mathrm{HBr}(g)$	hydrogen monobromide or hydrogen bromide	$\mathrm{HBr}(a q)$	hydrobromic acid
HI or $\mathrm{HI}(g)$	hydrogen moniodide or hydrogen iodide	$\mathrm{HI}(a q)$	hydriodic acid

Names and Formulas for Oxyacids

- If enough H^{+}ions are added to a (root)ate polyatomic ion to completely neutralize its charge, the (root)ic acid is formed.
- Nitrate, $\mathrm{NO}_{3}{ }^{-}$, goes to nitric acid, HNO_{3}.
- Sulfate, $\mathrm{SO}_{4}{ }^{2-}$, goes to sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$. (Note the -ur- in the name.)
- Phosphate, $\mathrm{PO}_{4}{ }^{3-}$, goes to phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$. (Note the -or- in the name.)

Oxyacids

Oxyanion Formula	Oxyanion Name	Oxyacid Formula	Oxyacid Name
$\mathrm{NO}_{3}{ }^{-}$	nitrate	HNO_{3}	nitric acid
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	acetate	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	acetic acid
$\mathrm{SO}_{4}{ }^{2-}$	sulfate	$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid (Note that the whole name sulfur is used in the oxyacid name.)
$\mathrm{CO}_{3}{ }^{2-}$	carbonate	$\mathrm{H}_{2} \mathrm{CO}_{3}$	carbonic acid
$\mathrm{PO}_{4}{ }^{3-}$	phosphate	$\mathrm{H}_{3} \mathrm{PO}_{4}$	phosphoric acid (Note that the root of phosphorus in an oxyacid name is phosphor-.)

Memorized Names

Name	Formula	Name	Formula
water	$\mathrm{H}_{2} \mathrm{O}$	ammonia	NH_{3}
methane	CH_{4}	ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$
propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	methanol (methyl alcohol)	$\mathrm{CH}_{3} \mathrm{OH}$
ethanol (ethyl alcohol)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	2-propanol (isopropyl alcohol)	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$

Periodic Table

																		$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
	1	2								1	1H		13	14	15	16	17	2
	1A	2A												4A	5A	6A	7 A	He
2	3	4											5	6	7	8	9	10
	Li	Be											B	C	N	O	F	Ne
	11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3	Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2 B	Al	Si	P	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
6	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7	87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
6			57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
7			89	90	91	92	93	94	95	96	97	98	99	100	101	102		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

https://preparatorychemistry.com/Bishop_periodic_table.pdf

- General procedure for naming compounds
- Step 1: Decide what type of compound the name or formula represents.
- Step 2: Apply the rules for writing the name or formula for that type of compound.

Table 6.13 (atoms) or 5.5 (chemistry)

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$A_{a} B_{b}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	HX(aq)	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

Practice

- The web address below will take you to tool that will help you recognize different types of substances.
https://preparatorychemistry.com/Type_substance_Canvas.html

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$\begin{aligned} & \mathrm{M}_{\mathrm{a}} \mathrm{~A}_{\mathrm{b}} \\ & \mathrm{AlF}_{3} \end{aligned}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

- Metal-nonmetal $\left(\mathrm{M}_{\mathrm{a}} \mathrm{A}_{\mathrm{b}}\right)$ so binary ionic
- Al only one charge - just name of metal with no Roman numeral.
- Metals without Roman numerals -Groups 1, 2, 3, and Al, Zn, Cd, and Ag
- The cation name is aluminum.
- Monatomic anion names - (root)ide
- Name of the anion is fluoride.
- Aluminum fluoride

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\begin{aligned} & \mathrm{AF}_{\mathrm{a}} \mathrm{~B}_{\mathrm{b}} \\ & \quad \mathrm{~Pa}^{2} \end{aligned}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

- Nonmetal-nonmetal $\left(\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}\right)$ so binary covalent.
- (prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide
- Leave off mono on first part of name.
- We use the prefix tri- to show three fluorine atoms.
- The root of the name fluorine is fluor-
- Phosphorus trifluoride

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\begin{aligned} & \mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \\ & \mathrm{H}_{3} \mathrm{PO}_{4} \end{aligned}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

$\mathrm{H}_{3} \mathrm{PO}_{4}$

- Form of oxyacid, $\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$
- (root)ic acid
- Use "phosphor" as the root in acid names.
- $\mathrm{H}_{3} \mathrm{PO}_{4}$ is phosphoric acid.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion CaCO_{3}	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

CaCO_{3}

Periodic Table

Ca^{2+} named calcium

																		8A
	1	2								1	1		13	14	15 $5 A$	16	$\begin{array}{r} 17 \end{array}$	2 He
2	3 Li	4 Be											5 B	${ }_{6}^{6}$	7 N	8 O	F	10 Ne
	11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3	Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2 B	Al	Si	P	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	L.u	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

6	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
7	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

CaCO_{3}

Ion	Name	Ion	Name
NH_{4}^{+}	ammonium	NO_{3}^{-}	nitrate
OH^{-}	hydroxide	$\mathrm{SO}_{4}{ }^{2-}$	sulfate
$\mathrm{CO}_{3}{ }^{2-}$	carbonate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-$	acetate
$\mathrm{PO}_{4}{ }^{3-}$	phosphate		

- Metal polyatomic ion $\left(\mathrm{M}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}\right)$ with X representing a polyatomic ion
- Ca is in Group 2, so the cation name is just the name of the metal.
- Need to memorize polyatomic names and formulas.
- CaCO_{3} is calcium carbonate.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s) $\mathrm{Ca}($	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ X = formula of polyatomic ion $\left.\mathrm{HSO}_{4}\right)_{2}$	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

$\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}$

- The name for the cation is calcium.
- Memorize $\mathrm{SO}_{4}{ }^{2-}$ as sulfate.
- When a polyatomic anion with a charge of -2 has an H^{+}added, we add "hydrogen" to the name of the anion.
- $\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}$ is calcium hydrogen sulfate.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$ CuCl_{2}	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

Periodic Table

																		$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
	1	2									1		13	14	15	16	17	2
	1A	2A								1	H		3A	4A	5A	6A	7A	He
	3	4											5	6	7	8	9	10
2	Li	Be											B	C	N	O	F	Ne
	11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3	Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	Al	Si	P	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
6	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
		6	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
		6	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		
		7	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

- Metal-nonmetal $\left(M_{a} A_{b}\right)$ so binary ionic
- Cu is not on the list of metals without a Roman numeral, so we need a Roman numeral to show the charge.
- Cl is in group 17, so it is -1 .
- Two Cl^{-}ions would be -2.
- Cu must be +2 to balance the charge, so the name of the cation is copper(II).
- Monatomic anions are named (root)ide, so Cl^{-}is chloride.
- CuCl_{2} is copper(II) chloride.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion $\mathrm{NH}_{4} \mathrm{~F}$	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

$\mathrm{NH}_{4} \mathrm{~F}$

- Polyatomic ion-nonmetal so ionic with a polyatomic ion.
- Memorize $\mathrm{NH}_{4}{ }^{+}$as ammonium.
- Monatomic anions are named (root)ide.
- $\mathrm{NH}_{4} \mathrm{~F}$ is ammonium fluoride.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$\begin{aligned} & \mathrm{M}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \text { or }\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \mathrm{X}=\text { formula } \\ & \text { of polyatomic } \\ & \text { ion } \\ & \mathrm{HCl}(\mathrm{aq}) \end{aligned}$	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	HX(aq)	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

$\mathrm{HCl}(\mathrm{aq})$

- $\mathrm{HX}(\mathrm{aq})$ is the form of a binary acid.
- Named hydro(root)ic acid
- $\mathrm{HCl}(a q)$ is hydrochloric acid.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$\mathrm{M}_{\mathrm{a}} \mathrm{A}_{\mathrm{b}}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s) $\left(\mathrm{NH}_{4}\right)$	$\begin{aligned} & \mathrm{M}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \text { or }\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \mathrm{X}=\text { formula } \\ & \text { of polyatomic } \\ & \text { ion } \\ & { }_{3} \mathrm{PO}_{4} \end{aligned}$	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	HX(aq)	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$

- Two polyatomic ions so ionic with polyatomic ions.
- Need to memorize names and formulas for polyatomic ions.
- $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ is ammonium phosphate.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ X = formula of polyatomic ion Ammonium	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ nitrate	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

Steps for lonic Formulas

- The steps for writing formulas for ionic compounds are
- Determine the formula, including charge, for the ions.
- Determine the ratio of the ions necessary to balance the charge.

ammonium nitrate

- Ammonium and nitrate are both polyatomic ions.
- The memorized formula for ammonium is $\mathrm{NH}_{4}{ }^{+}$.
- The memorized formula for nitrate is $\mathrm{NO}_{3}{ }^{-}$.
- A 1:1 ratio balances the charge.
- Ammonium nitrate is $\mathbf{N H}_{4} \mathbf{N O}_{3}$. (Note no parentheses)

acetic acid

- It is probably best to memorize acetic acid as $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. It is also described at $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$.
- $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ - is acetate.
- If you add enough H^{+}ions to the -ate anion to neutralize the charge, you get the -ic acid.
- Acetic acid is $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ X = formula of polyatomic ion hydroge	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ n sulfate	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

sodium hydrogen sulfate Periodic Table

sodium ion - Na^{+}

																		8A
	1	2									1		13	14	15	16	17	2
	1A	2A								1	H		3A	4A	5A	6A	7 A	He
	3	4											5	6	7	8	9	10
2	Li	Be											B	C	N	O	F	Ne
	11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3	Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	Al	Si	P	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

6 \begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 57 \& 58 \& 59 \& 60 \& 61 \& 62 \& 63 \& 64 \& 65 \& 66 \& 67 \& 68 \& 69 \& 70

\& | 57 |
| :---: | \& Ca \& Ce \& Pr \& Nd \& Pm \& Sm \& Eu \& Gd \& Tb \& Dy \& Ho \& Er \& Tm

Yb

\hline \& 89 \& 90 \& 91 \& 92 \& 93 \& 94 \& 95 \& 96 \& 97 \& 98 \& 99 \& 100 \& 101 \& 102

Ac \& Th \& Pa \& U \& Np \& Pu \& Am \& Cm \& Bk \& Cf \& Es \& Fm \& Md \& No

\hline
\end{tabular}

sodium hydrogen sulfate

- "(name of metal) (name of polyatomic ion)" so ionic with a polyatomic ion.
- Sodium is in group 1, so it is +1 .
- Sulfate is $\mathrm{SO}_{4}{ }^{2-}$.
- Assume one H^{+}.
- Adding one H^{+}to $\mathrm{SO}_{4}{ }^{2-}$ yields $\mathrm{HSO}_{4}{ }^{-}$.
- Balance the charge.
- NaHSO_{4}

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$A_{a} B_{b}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$ otassium	NaCl or FeCl_{3} bromide	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$\begin{aligned} & \mathrm{M}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \text { or }\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \mathrm{X}=\text { formula } \\ & \text { of polyatomic } \\ & \text { ion } \end{aligned}$	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

potassium bromide Periodic Table

potassium $-\mathrm{K}^{+}$

	$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$	2 2
2	3	4
	Li	Be
3	11	12
	Na	Mg
4	19	20
	K	Ca
5	37	38
	Rb	Sr
6	55	56
	Cs	Ba
7	87	88
	Fr	Ra

3	4	5	6	7	8	9	10	11	12

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

potassium bromide

- "(name of metal) (root of nonmetal)ide" so binary ionic.
- K (for potassium) is in group 1 , so the cation is K^{+}.
- Br (for bromine) is in group 17, so the anion is Br^{-}.
- One K+ balances the charge on one Br^{-}.
- Potassium bromide is KBr

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s) mag dihy	$\begin{aligned} & \mathrm{M}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \text { or }\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \mathrm{X}=\text { formula } \\ & \text { of polyatomic } \\ & \text { ion } \\ & \text { nesium } \\ & \text { drogen pho } \end{aligned}$	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sphate	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	HX(aq)	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

magnesium dihydrogen phosphate Periodic Table

magnesium $-\mathrm{Mg}^{2+}$

	$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$	$\begin{array}{r} 2 \\ 2 \mathrm{~A} \end{array}$
2	3	4
	Li	Be
3	11	12
	Na	Mg
4	19	20
	K	Ca
5	37	38
	Rb	Sr
6	55	56
	Cs	Ba
7	87	88
	Fr	Ra

							1	1 H		$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 14 \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 17 \\ 7 \mathrm{~A} \end{array}$	$\begin{gathered} \hline 2 \\ \mathrm{He} \end{gathered}$
										5 B	6	$\begin{gathered} 7 \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \hline 8 \\ & \mathrm{O} \end{aligned}$	9 F	10 Ne
3 3 B	4 4 B	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$	8 8 B	9 8 B		$\begin{aligned} & 11 \\ & 1 \mathrm{~B} \end{aligned}$	12 2 B	13 Al	14	$\begin{aligned} & 15 \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} 16 \\ S \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	18 Ar
$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathrm{Ti} \end{aligned}$	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{gathered} 25 \\ \mathrm{Mn} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	30 Zn	31	32 Ge	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	35 Br	36 Kr
$\begin{aligned} & 39 \\ & Y \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{gathered} 42 \\ \text { Mo } \end{gathered}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	46 Pd	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	48	49 In	50 Sn	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	53 1	54 Xe
71	$\begin{gathered} 72 \\ \mathrm{Hf} \end{gathered}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathrm{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \mathrm{Os} \end{aligned}$	$\begin{gathered} \hline 77 \\ \mathrm{Ir} \end{gathered}$	$\begin{aligned} & 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{gathered} 79 \\ \mathrm{Au} \end{gathered}$	80 Hg	81 Tl	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \mathrm{P}_{0} \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	86 Rn
103	$\begin{aligned} & \hline 104 \\ & \mathrm{Rf} \end{aligned}$	$\begin{aligned} & \hline 105 \\ & \mathrm{Db} \end{aligned}$	106 Sg	$\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$	$\begin{aligned} & \hline 108 \\ & \mathrm{Hs} \end{aligned}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	110 Ds	111 Rg	112 Cn	113	Fl14	115	116	117 Ts	118 Og

6 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |
| | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
| Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | |

magnesium dihydrogen phosphate

- "(name of metal) (name of polyatomic ion)" so ionic with a polyatomic ion.
- Magnesium is in group 2, so it is +2 .
- Phosphate is $\mathrm{PO}_{4}{ }^{3-}$.
- Adding two H^{+}ions to $\mathrm{PO}_{4}{ }^{3-}$ yields $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$.
- Balance the charge.
- $\mathbf{M g}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$A_{a} B_{b}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}}$ $X=$ formula of polyatomic ion	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$ or CuSO_{4} or $\mathrm{NH}_{4} \mathrm{Cl}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	HX(aq)	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

hydrofluoric acid

- "hydro(root)ic acid" so binary acid.
- Formulas for binary acids have the form $\mathrm{HX}(\mathrm{aq})$ or $\mathrm{H}_{2} \mathrm{X}(\mathrm{aq})$.
- Fluorine atoms only form one bond.
- Hydrofluoric acid is HF(aq).

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent dipho	$\overline{A_{a} B_{b}}$ sphorus	$\begin{aligned} & \mathrm{N}_{2} \mathrm{O}_{5} \text { or } \mathrm{CO}_{2} \\ & \text { etroxide } \end{aligned}$	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$M_{a} X_{b}$ or $\left(\mathrm{NH}_{4}\right)_{a} \mathrm{X}_{\mathrm{b}}$ X = formula of polyatomic ion	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{HPO}_{4} \\ & \text { or } \mathrm{CuSO}_{4} \\ & \text { or } \mathrm{NH}_{4} \mathrm{Cl} \\ & \text { or } \\ & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \end{aligned}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	$\mathrm{HX}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

diphosphorus tetroxide

- "(prefix)(name of first element in formula) (prefix)(root of second element)ide" so binary covalent.
- di- represents 2.
- Phosphorus is P
- tetra- represents 4.
- ox- is O .
- Diphosphorus tetroxide is $\mathbf{P}_{2} \mathbf{O}_{4}$.

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$\begin{aligned} & \mathrm{M}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \text { or }\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \mathrm{X}=\text { formula } \\ & \text { of polyatomic } \\ & \text { ion } \\ & \text { inum carb } \end{aligned}$	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{HPO}_{4} \\ & \text { or } \mathrm{CuSO}_{4} \\ & \text { or } \mathrm{NH}_{4} \mathrm{Cl} \\ & \text { or } \\ & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \\ & \text { onate } \end{aligned}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	HX(aq)	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid	$\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

aluminum carbonate Periodic Table

$$
\text { aluminum - } \mathrm{Al}^{3+}
$$

6

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

aluminum carbonate

- "(name of metal) (name of polyatomic ion)" so ionic with a polyatomic ion.
- Aluminum is Al. It forms Al^{3+} ions.
- Memorize carbonate as $\mathrm{CO}_{3}{ }^{2-}$.
- Cross the superscripts to get the subscripts for Al^{3+} and $\mathrm{CO}_{3}{ }^{2-}$.
- $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$

Nomenclature Summary

Type of Compound	General Formula	Examples	General Name	Examples
Binary covalent	$\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$	$\mathrm{N}_{2} \mathrm{O}_{5}$ or CO_{2}	(prefix unless mono)(name of first element in formula) (prefix)(root of second element)ide	dinitrogen pentoxide or carbon dioxide
Binary ionic	$M_{a} A_{b}$	NaCl or FeCl_{3}	(name of metal) (root of nonmetal)ide or (name of metal)(Roman numeral) (root of nonmetal)ide	sodium chloride or iron(III) chloride
Ionic with polyatomic ion(s)	$\begin{aligned} & \mathrm{M}_{2} \mathrm{X}_{\mathrm{b}} \\ & \text { or }\left(\mathrm{NH}_{4}\right)_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \\ & \mathrm{X}=\text { formula } \\ & \text { of polyatomic } \\ & \text { ion } \end{aligned}$	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{HPO}_{4} \\ & \text { or } \mathrm{CuSO}_{4} \\ & \text { or } \mathrm{NH}_{4} \mathrm{Cl} \\ & \text { or } \\ & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \end{aligned}$	(name of metal) (name of polyatomic ion) or (name of metal)(Roman numeral) (name of polyatomic ion) or ammonium (root of nonmetal)ide or ammonium (name of polyatomic ion)	lithium hydrogen phosphate or copper(II) sulfate or ammonium chloride or ammonium sulfate
Binary acid	HX(aq)	$\mathrm{HCl}(\mathrm{aq})$	hydro(root)ic acid	hydrochloric acid
Oxyacid sulfu	$\begin{aligned} & \mathrm{H}_{a} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \\ & \text { ric acid } \end{aligned}$	HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$	(root)ic acid	nitric acid or sulfuric acid or phosphoric acid

sulfuric acid

- "(root)ic acid" without "hydro-" so oxyacid.
- Sulfate is $\mathrm{SO}_{4}{ }^{2-}$.
- Add enough H^{+}ions to neutralize charge.
- Sulfuric acid is $\mathrm{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}}$.

Practice

- There are two tools on the textbook website that will allow you to practice the tasks described in this lesson.
- Identification of types of substances
https://preparatorychemistry.com/Type substance_Canvas.html
- Converting between names and formulas for compounds
https://preparatorychemistry.com/nomenclature_Canvas.html

Arrhenius Base Definitions

- A base is a substance that generates OH^{-}when added to water.
- A basic solution is a solution with a significant concentration of OH^{-} ions.

Characteristics of Bases

- Bases have a bitter taste.
- Bases feel slippery on your fingers.
- Bases turn litmus from red to blue.
- Bases react with acids.
- Strong Base = due to a completion reaction with water, generates close to one (or more) OH^{-}for each formula unit of base added to water.
- Metal hydroxides are strong bases.

Ammonia and Water

Ammonia reacts with water in a reversible reaction, which forms ammonium and hydroxide ions.

This proton, H^{+}, is transferred to an ammonia molecule.

$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

Indicates a reversible reaction be transferred back to the hydroxide ion.

$\rightleftharpoons \quad \mathrm{NH}_{4}^{+}(a q) \quad+$
$\mathrm{OH}^{-}(a q)$

- Weak Base = due to a reversible reaction with water, generates significantly less than one OH^{-}for each formula unit of base added to water.
- Ammonia and ionic compounds that contain $\mathrm{CO}_{3}{ }^{2-}$ or $\mathrm{HCO}_{3}{ }^{-}$are weak bases.

Ammonia Solution

In a typical ammonia solution, there are about 200 times as many uncharged ammonia molecules, NH_{3}, as ammonium ions $\mathrm{NH}_{4}{ }^{+}$.

Carbonate Bases

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \\
& \mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

$\mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}$ (aq)

Arrhenius Bases

Strong

Weak

Metal hydroxides lonic compounds with $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{HCO}_{3}{ }^{-}$

Certain Uncharged molecules

None
NH_{3}

Acidic and Basic Solutions

- The pH scale describes the acidity and basicity of dilute acid and base solutions.
- In pure water, there are proton transfers between water molecules that form hydronium ions and hydroxide ions.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- The reaction is reversible, and at equilibrium, the product of the hydronium ion and hydroxide ion concentrations expressed in $\mathrm{mol} / \mathrm{L}$ is about 10^{-14}.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
$$

- We consider acidic and basic solutions to be dilute if they have a concentrations of 1 $\mathrm{mol} / \mathrm{L}$ or less.
- Because the product of the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}is 10^{-14}, as the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ decreases from $1 \mathrm{~mol} / \mathrm{L}$ to $10^{-14} \mathrm{~mol} / \mathrm{L}$, the concentration of OH^{-} increases from $10^{-14} \mathrm{~mol} / \mathrm{L}$ to $1 \mathrm{~mol} / \mathrm{L}$.
- See the table at the right.

1	10^{-14}
10^{-1}	10^{-13}
10^{-2}	10^{-12}
10^{-3}	10^{-11}
10^{-4}	10^{-10}
10^{-5}	10^{-9}
10^{-6}	10^{-8}
10^{-7}	10^{-7}
10^{-8}	10^{-6}
10^{-9}	10^{-5}
10^{-10}	10^{-4}
10^{-11}	10^{-3}
10^{-12}	10^{-2}
10^{-13}	10^{-1}
10^{-14}	1

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

- When the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration is greater than the OH^{-} concentration, the solution is acidic. (Note that even in a dilute solution of acid, there are some hydroxide ions.)
- When the OH^{-}concentration is greater than the $\mathrm{H}_{3} \mathrm{O}^{+}$ concentration, the solution is basic.
- When the concentrations are equal, both $10^{-7} \mathrm{~mol} / \mathrm{L}$, we say the solution is neutral in the acid/base sense.

1	10^{-14}
10^{-1}	10^{-13}
10^{-2}	10^{-12}
10^{-3}	10^{-11}
10^{-4}	10^{-10}
10^{-5}	10^{-9}
10^{-6}	10^{-8}
10^{-7}	10^{-7}
10^{-8}	10^{-6}
10^{-9}	10^{-5}
10^{-10}	10^{-4}
10^{-11}	10^{-3}
10^{-12}	10^{-2}
10^{-13}	10^{-1}
10^{-14}	1

- To avoid the small numbers associated with describing acidic and basic solutions in terms of $\mathrm{mol} / \mathrm{L}, \mathrm{pH}$ is defined as

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- An acidic solution that has an $\mathrm{H}_{3} \mathrm{O}^{+}$ concentration of $10^{-3} \mathrm{~mol} / \mathrm{L}$ has a pH of 3 $\left(-\log 10^{-3}=3\right)$.
- A basic solution that has an OH^{-}concentration of $10^{-3} \mathrm{~mol} / \mathrm{L}$, and therefore an $\mathrm{H}_{3} \mathrm{O}^{+}$ concentration of $10^{-11} \mathrm{~mol} / \mathrm{L}$, has a pH of 11 $\left(-\log 10^{-11}=11\right)$.

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

- Dilute acidic solutions with $\mathrm{H}_{3} \mathrm{O}^{+}$concentrations of 1 to $10^{-6} \mathrm{~mol} / \mathrm{L}$ have a pHs of 0 to 6.
- Dilute basic solutions with OH^{-} concentrations of 10^{-6} to $1 \mathrm{~mol} / \mathrm{L}$ have $\mathrm{H}_{3} \mathrm{O}^{+}$ concentrations of 10^{-8} to 10^{-14} $\mathrm{mol} / \mathrm{L}$ and pHs of 8-14.
- Neutral solutions with $\mathrm{H}_{3} \mathrm{O}^{+}$ and OH^{-}concentrations $10^{-7} \mathrm{~mol} / \mathrm{L}$ have a pH of 7 .

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $(\mathrm{mol} / \mathrm{L})$	$[\mathrm{OH}]$ $(\mathrm{mol} / \mathrm{L})$	pH
1	10^{-14}	0
10^{-1}	10^{-13}	1
10^{-2}	10^{-12}	2
10^{-3}	10^{-11}	3
10^{-4}	10^{-10}	4
10^{-5}	10^{-9}	5
10^{-6}	10^{-8}	6
10^{-7}	10^{-7}	7
10^{-8}	10^{-6}	8
10^{-9}	10^{-5}	9
10^{-10}	10^{-4}	10
10^{-11}	10^{-3}	11
10^{-12}	10^{-2}	12
10^{-13}	10^{-1}	13
10^{-14}	1	14

pH Range

- Reactions between Arrhenius acids and Arrhenius bases are called neutralization reactions.
$\mathrm{HNO}_{3}(a q)+\mathrm{NaOH}(a q)$
$\rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaNO}_{3}(a q)$

Aqueous Nitric Acid

Mixture of HNO_{3} and NaOH Before

 ReactionAt the instant after nitric acid and sodium hydroxide solutions are mixed and before the reaction, four separate ions move throughout the solution, breaking and making attractions and constantly colliding with each other.

When a hydroxide ion, OH^{-}, collides with a
hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, an H^{+}ion is transferred from the $\mathrm{H}_{3} \mathrm{O}^{+}$to the OH^{-}, yielding two water molecules, $\mathrm{H}_{2} \mathrm{O}$.

Hydronium ion, H

Hydroxide ion, OH^{-}

Strong Acid and Strong Base Reaction

The hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, from the strong acid reacts with the hydroxide ion, OH^{-}, from the strong base to form water, $\mathrm{H}_{2} \mathrm{O}$.

This proton, H^{+}, is transferred to a hydroxide ion.

$+$

$$
\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

$+$
$\mathrm{OH}^{-}(a q)$
\rightarrow
$2 \mathrm{H}_{2} \mathrm{O}(l)$

Mixture of HNO_{3} and NaOH After the Reaction

After the reaction between nitric acid and sodium hydroxide, hydroxide ions, OH^{-}, and hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, have combined to form water, $\mathrm{H}_{2} \mathrm{O}$.

The sodium ions, Na^{+}, and nitrate ions, $\mathrm{NO}_{3}{ }^{-}$, remain in solution in the same form they were in before the reaction.

Sodium ion, Na^{+}

Nitrate ion, $\mathrm{NO}_{3}{ }^{-}$
https://preparatorychemistry.com/neutralization_Canvas.html

Reaction between

an Acid and a

 Hydroxide Base.- If you have an Arrhenius acid combined with an Arrhenius base, they will react in an acidbase reaction.
- The reactions we will see have the double displacement form.

$$
\mathrm{AB}(\mathrm{aq})+\mathrm{CD}(\mathrm{aq} \text { or } \mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CB}(\mathrm{aq})
$$

- The positive part of the acid is H^{+}.
- The hydroxide base can be soluble or insoluble.
- The products are water and a water-soluble ionic compound.

Reaction between an Acid and a Carbonate Base

- The reaction of an acid with a base containing the carbonate ion or the hydrogen carbonate ion has the double displacement form.

$$
\begin{aligned}
\mathrm{AB}(\mathrm{aq}) & +\mathrm{CD}(\mathrm{aq} \text { or } \mathrm{s}) \\
& \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CB}(\mathrm{aq})
\end{aligned}
$$

- The positive part of the acid is H^{+}.
- The products are water, carbon dioxide, and a water-soluble ionic compound. The $\mathrm{H}_{2} \mathrm{O}$ and the CO_{2} come from the decomposition of the initial product $\mathrm{H}_{2} \mathrm{CO}_{3}$.

Steps for Writing Acid-Base Equations

- Write the formulas for the given reactants separate by a "+" and followed by a single arrow. The acid formula will be followed by an (aq), and the base formula will followed by (aq) if it is water soluble or (s) if it is insoluble.

$$
\mathrm{AB}(\mathrm{aq})+\mathrm{CD}(\mathrm{aq} \text { or } \mathrm{s}) \rightarrow
$$

Steps for Writing Acid-Base Equations

- Follow these steps to determine the formulas for the products.
- Divide the acid formula into H^{+}and whatever is left after all of the H^{+}ions are removed. For example, HNO_{3} is divided into H^{+}and $\mathrm{NO}_{3}{ }^{-}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is divided into H^{+}and $\mathrm{SO}_{4}{ }^{2-}$.
- Divide the base into its cation and whatever is left when the cations are removed. For example, NaOH is divided into Na^{+}and OH^{-}, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ is divided into K^{+}and $\mathrm{CO}_{3}{ }^{2-}$.

Steps for Writing Acid-Base Equations (cont.)

- Follow these steps to determine the formulas for the products. (cont.)
- If the base includes the hydroxide ion, the first product will be water.

$$
\mathrm{AB}(\mathrm{aq})+\mathrm{CD}(\mathrm{aq} \text { or } \mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CB}(\mathrm{aq})
$$

- If the base includes either the carbonate ion or the hydrogen carbonate ion, the first products will be water and carbon dioxide.

$$
\begin{aligned}
& \mathrm{AB}(\mathrm{aq})+\mathrm{CD}(\mathrm{aq} \text { or } \mathrm{s}) \\
& \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CB}(\mathrm{aq})
\end{aligned}
$$

Steps for Writing Acid-Base Equations (cont.)

- Follow these steps to determine the formulas for the products. (cont.)
- The formula for the second product is formed by combining the cation from the base and the anion from the acid. For example, Na^{+}combines with $\mathrm{NO}_{3}-$ to form the CB formula, $\mathrm{NaNO}_{3}(\mathrm{aq})$. (Remember that even though the ions in ionic compounds dissolved in water are separated from each other, we describe them as together in the complete equation.)
$\mathrm{AB}(\mathrm{aq})+\mathrm{CD}(\mathrm{aq}$ or s$) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CB}(\mathrm{aq})$
or $\mathrm{AB}(\mathrm{aq})+\mathrm{CD}(\mathrm{aq}$ or s$) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CB}(\mathrm{aq})$

Example 1

- Write the complete equation for the neutralization reaction that takes place when aqueous solutions of sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, and sodium hydroxide, NaOH , are mixed. (If an acid has more than one acidic hydrogen, assume that there is enough base to remove all of them. Assume that there is enough acid to neutralize all of the basic hydroxide ions.)

Example 1 Steps

- The acid-base reactions we will see are double displacement reactions.

$$
\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}
$$

- Write the formulas for the given reactants separated by a "+" and followed by a single arrow. The acid formula will be followed by an (aq), and the base formula will followed by (aq) if it is water soluble or (s) if it is insoluble.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow
$$

Example 1 Steps

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow
$$

- Identify A, B, C, and D.
- For the acid $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~A}$ is H^{+}and B is $\mathrm{SO}_{4}{ }^{2-}$.
- For $\mathrm{NaOH}, \mathrm{C}$ is Na^{+}and D is OH^{-}.
- Write the formulas for the AD and CB products on the right side of the arrow. Remember to balance the charges when writing the formulas. $\mathrm{H}_{2} \mathrm{O}$ will be followed by (I), and the ionic product will be followed by (aq).

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

Example 1 Steps

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) & +\mathrm{NaOH}(\mathrm{aq}) \\
& \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
\end{aligned}
$$

- If one of your products is $\mathrm{H}_{2} \mathrm{CO}_{3}$, eliminate it and write $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ in its place.
- Balance the equation.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) & +2 \mathrm{NaOH}(\mathrm{aq}) \\
& \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
\end{aligned}
$$

Example 2

- Write the complete equation for the neutralization reaction that takes place when aqueous solutions of hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, and potassium carbonate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, are mixed. (If an acid has more than one acidic hydrogen, assume that there is enough base to remove all of them. Assume that there is enough acid to neutralize all of the basic anions.)

Example 2 Steps

- The acid-base reactions we will see are double displacement reactions.

$$
\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}
$$

- Write the formulas for the given reactants separate by a "+" and followed by a single arrow. The acid formula will be followed by an (aq), and the base formula will followed by (aq) if it is water soluble or (s) if it is insoluble.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow
$$

Example 2 Steps

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow
$$

- Identify $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .
- For the acid HCl, A is H^{+}and B is Cl^{-}.
- For $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{C}$ is K^{+}and D is $\mathrm{CO}_{3}{ }^{2-}$.
- Write the formulas for the AD and CB products on the right side of the arrow. Remember to balance the charges when writing the formulas. The ionic product will be followed by (aq).

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{I})+\mathrm{KCl}(\mathrm{aq})
$$

Example 2 Steps

$\mathrm{HCl}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq})$

- If one of your products is $\mathrm{H}_{2} \mathrm{CO}_{3}$, eliminate it and write $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ in its place.

$$
\begin{aligned}
& \mathrm{HCl}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \\
& \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{KCl}(\mathrm{aq})
\end{aligned}
$$

- Balance the equation.

$$
\begin{aligned}
& 2 \mathrm{HCl}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \\
& \quad \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{KCl}(\mathrm{aq})
\end{aligned}
$$

Three Definitions of Acids and Bases

- Arrhenius
- An acid is a substance that generates $\mathrm{H}_{3} \mathrm{O}^{+}$in water
- A base is a substance that generates OH^{-}in water
- Brønsted-Lowry
- Lewis

Arrhenius AcidBase Reactions?

$\mathrm{NH}_{3}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$ neutral acid
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$ base neutral

Acid and Base Definitions

- Acid
- Arrhenius: a substance that generates $\mathrm{H}_{3} \mathrm{O}^{+}$in water
- Brønsted-Lowry: a proton, H^{+}, donor
- Base
- Arrhenius: a substance that generates OH^{-}in water
- Brønsted-Lowry: a proton, H^{+}, acceptor
- Acid-Base Reaction
- Arrhenius: between an Arrhenius acid and base
- Brønsted-Lowry: a proton $\left(\mathrm{H}^{+}\right)$transfer

Brønsted-Lowry Acids and Bases

$\mathrm{NH}_{3}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$ base acid

Why Two Definitions for Acids and Bases? (1)

- Positive Aspects of Arrhenius Definitions
- All isolated substances can be classified as acids (generate $\mathrm{H}_{3} \mathrm{O}^{+}$in water), bases (generate OH^{-}in water), or neither.
- Allows predictions, including (1) whether substances will react with a base or acid, (2) whether the pH of a solution of the substance will be less than 7 or greater than 7, and (3) whether a solution of the substance will be sour or bitter.
- Negative Aspects of Arrhenius Definitions
- Does not include similar reactions (H^{+}transfer reactions) as acid-base reactions.

Why Two Definitions for Acids and Bases? (2)

- Positive aspects of Brønsted-Lowry model
- Includes similar reactions (H^{+}transfer reactions) as acid-base reactions.
- Negative aspects of Brønsted-Lowry model
- Cannot classify isolated substances as acids, bases, or neither. The same substance can sometimes be an acid and sometimes a base.
- Does not allow predictions of (1) whether substances will react with another substance, (2) whether the pH of a solution of the substance will be less than 7 or greater than 7 , and (3) whether a solution will be sour or bitter.

Conjugate AcidBase Pairs

$\mathrm{NH}_{3}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{F}^{-}(a q)$ base acid acid
 base

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{F}^{-}(a q)$ base acid acid base

- $\mathrm{H}_{3} \mathrm{PO}_{4}$ is the conjugate acid of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$.
- $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is the conjugate base of $\mathrm{H}_{3} \mathrm{PO}_{4}$.
- $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are a conjugate acidbase pair.
- F^{-}is the conjugate base of the acid HF.
- HF is the conjugate acid of the acid F^{-}.
- HF and F^{-}are a conjugate acid-base pair.

Amphoteric Substances

Can be a Brønsted-Lowry acid in one reaction and a Brønsted-Lowry base in another?
$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{F}^{-}(\mathrm{aq})$ base acid $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ acid base $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$ base acid
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ acid base

