Three Definitions of Acids and Bases

Arrhenius

- An acid is a substance that generates
 H₃O⁺ in water
- A base is a substance that generates
 OH- in water
- Brønsted-Lowry
- Lewis

Arrhenius Acid-Base Reactions?

$$NH_3(aq) + HF(aq) \rightleftharpoons NH_4^+(aq) + F^-(aq)$$

base acid
 $H_2O(I) + HF(aq) \rightleftharpoons H_3O^+(aq) + F^-(aq)$
neutral acid
 $NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
base neutral

Acid and Base Definitions

Acid

- Arrhenius: a substance that generates H₃O⁺ in water
- Brønsted-Lowry: a proton, H⁺, donor

Base

- Arrhenius: a substance that generates OH⁻ in water
- Brønsted-Lowry: a proton, H⁺, acceptor

Acid-Base Reaction

- Arrhenius: between an Arrhenius acid and base
- Brønsted-Lowry: a proton (H⁺) transfer

Brønsted-Lowry Acids and Bases

$$NH_3(aq) + HF(aq) \rightleftharpoons NH_4^+(aq) + F^-(aq)$$

base acid
 $H_2O(I) + HF(aq) \rightleftharpoons H_3O^+(aq) + F^-(aq)$
base acid
 $NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
base acid

Why Two Definitions for Acids and Bases? (1)

- Positive Aspects of Arrhenius Definitions
 - All isolated substances can be classified as acids (generate H₃O⁺ in water), bases (generate OH⁻ in water), or neither.
 - Allows predictions, including (1) whether substances will react with a base or acid, (2) whether the pH of a solution of the substance will be less than 7 or greater than 7, and (3) whether a solution of the substance will be sour or bitter.
- Negative Aspects of Arrhenius Definitions
 - Does not include similar reactions (H⁺ transfer reactions) as acid-base reactions.

Why Two Definitions for Acids and Bases? (2)

- Positive aspects of Brønsted-Lowry model
 - Includes similar reactions (H⁺ transfer reactions) as acid-base reactions.
- Negative aspects of Brønsted-Lowry model
 - Cannot classify isolated substances as acids, bases, or neither. The same substance can sometimes be an acid and sometimes a base.
 - Does not allow predictions of (1) whether substances will react with another substance,
 (2) whether the pH of a solution of the substance will be less than 7 or greater than 7, and (3) whether a solution will be sour or bitter.

Conjugate Acid-Base Pairs

$$NH_3(aq) + HF(aq) \rightleftharpoons NH_4^+(aq) + F^-(aq)$$

base acid base

Brønsted-Lowry Acids and Bases

$$H_2PO_4^-(aq) + HF(aq) \Rightarrow H_3PO_4(aq) + F^-(aq)$$

base acid base

- H₃PO₄ is the conjugate acid of H₂PO₄⁻.
- H₂PO₄⁻ is the conjugate base of H₃PO₄.
- H₃PO₄ and H₂PO₄⁻ are a conjugate acidbase pair.
- F⁻ is the conjugate base of the acid HF.
- HF is the conjugate acid of the acid F⁻.
- HF and F⁻ are a conjugate acid-base pair.

Amphoteric Substances

Can be a Brønsted-Lowry acid in one reaction and a Brønsted-Lowry base in another?

$$HCO_3^-(aq) + HF(aq) \rightleftharpoons CO_2(g) + H_2O(I) + F^-(aq)$$

base acid

$$HCO_3^-(aq) + OH^-(aq) \rightleftharpoons CO_3^{2-}(aq) + H_2O(I)$$
 acid base

$$H_2PO_4^-(aq) + HF(aq) \Rightarrow H_3PO_4(aq) + F^-(aq)$$
 base acid

$$H_2PO_4^-(aq) + 2OH^-(aq) \rightarrow PO_4^{3-}(aq) + 2H_2O(I)$$
 acid base