Particle and Wave Nature

- The less massive the particle, the more important its wave character.
- The electron has a very low mass, low enough to have significant wave character.

Covalent Bond Formation

Covalent Bond Formation

- Increased negative charge between the two positive nuclei leads to increased +/- attraction and holds the atoms together.
- Covalent bond = a link between atoms due to the sharing of two electrons

Molecule

- Molecule = an uncharged collection of atoms held together by covalent bonds.
- Two hydrogen atoms combine to form a hydrogen molecule, which is described with the formula H₂.

Nonpolar Covalent Bond

Polar Covalent Bond

• If one atom in the bond attracts electrons more than the other atom, the electron negative charge shifts to that atom giving it a partial negative charge. The other atom loses negative charge giving it a partial positive charge. The bond is called a *polar covalent bond*.

Ionic Bond Formation

Ionic Bond

- The attraction between cation and anion.
- Atoms of nonmetallic elements often attract electrons so much more strongly than atoms of metallic elements that one or more electrons are transferred from the metallic atom (forming a positively charged particle or *cation*), to the nonmetallic atom (forming a negatively charged particle or *anion*).

Sodium Chloride, NaCl, Structure

Bond Types

Nonpolar Covalent Bond

Equal sharing of electrons

Both atoms attract electrons equally (or nearly so).

No significant charges form.

Polar Covalent Bond

Unequal sharing of electrons

Ionic Bond

Strong attraction between positive and negative charges.

Types of Compounds

- All nonmetallic atoms usually leads to all covalent bonds, which from molecules. These compounds are called *molecular compounds*.
- Metal-nonmetal combinations usually lead to ionic bonds and *ionic* compounds.

Classification of Compounds

Molecular compound

Hydrogen chloride, HCl, gas

Ionic compound

Sodium chloride, NaCl, solid

Summary

- Nonmetal-nonmetal combinations (e.g. HCI)
 - Covalent bonds
 - Molecules
 - Molecular Compound
- Metal-nonmetal combinations (e.g. NaCl)
 - Probably ionic bonds
 - Alternating cations and anions in crystal structure
 - Ionic compound