Making Phosphoric Acid - Furnace Process for making H₃PO₄ to be used to make fertilizers, detergents, and pharmaceuticals. - React phosphate rock with sand and coke at 2000 °C. $$2Ca_3(PO_4)_2 + 6SiO_2 + 10C$$ $$\rightarrow 4P + 10CO + 6CaSiO_3$$ React phosphorus with oxygen to get tetraphosphorus decoxide. $$4P + 5O_2 \rightarrow P_4O_{10}$$ React tetraphosphorus decoxide with water to make phosphoric acid. $$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$$ # Sample Calculations (1) - What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P? - Beginning of unit analysis setup. $$\frac{1}{2} \log P_4 O_{10} = 1.09 \times 10^4 \log P \left(\frac{1 \log P}{1 \log P} \right)$$ The formula for P₄O₁₀ provides us with a conversion factor that converts from units of P to units of P₄O₁₀. 1 molecule P₄O₁₀ 4 atoms P Goal: To develop conversion factors that will convert between a measurable property (mass) and number of particles ? $$kg P_4 O_{10} = 1.09 \times 10^4 kg P \left(\frac{1 kg}{1 kg} \right)$$ Measurable Property 1 Mass 1 Number of Particles 1 **Number of Particles 1** Number of Particles 2 Number of Particles 2 Mass 2 Measurable Property 2 ### Molar Conversions ### Our Calculation - What is the maximum mass of P_4O_{10} that can be formed from 1.09×10^4 kg P? - Here are the general steps for our calculation. Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀ # Our Calculation – Step 1 Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀ We can convert grams of P to moles of P using the molar mass of P, which comes from its atomic mass that is found on the periodic table. $$\frac{30.9738 \text{ g P}}{1 \text{ mol P}}$$ or $\frac{1 \text{ mol P}}{30.9738 \text{ g P}}$ | | | | | | | | | | | | | | | | | | | 18 | |---|--------------------|------------------------------|---------------------|--------------------|--------------------|---------------------|---------------------|--------------------|---------------------|---------------------|--------------------|-------------------|--------------------|-------------------|---------------------|------------------------------|--------------------|--------------------------------| 8A | | | 1 | 2 | | | | | | | | 1 | 1
H | | 13 | 14 | 15 | 16 | 17 | He 2 | | | 1A | 2A | | | | | | | | 1 | 1.00794 | | 3A | 4A | 5A | 6A | 7A | 1.0026 | | 2 | 3
Li
6.941 | 4
Be
_{9.0122} | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
_{20.1797} | | 3 | Na | $\frac{12}{M\alpha}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | |) | 22.9898 | Mg
24.3050 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | 26.9815 | 28.0855 | 30.9738 | 32.066 | 35.4527 | 39.948 | | 4 | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.867 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9380 | 26
Fe
55.845 | 27
Co
58.9332 | 28
Ni
58.6934 | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
_{78.96} | 35
Br
79.904 | 36
Kr
83.80 | | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50
Sn | 51 | 52
Te | 53
I | 54 | | 5 | Rb
85.4678 | Sr
87.62 | Y
88.9058 | Zr
91.224 | Nb
92.9064 | Mo
95.95 | Tc (98) | Ru
101.07 | Rh
102.9055 | Pd
106.42 | Ag
107.868 | Cd | In
114.818 | Sn
118.710 | Sb
121.760 | Te
127.60 | I
126.9045 | Xe
131.29 | | 6 | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Ho | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | Ü | 132.9054 | 137.327 | 174.967 | 178.49 | 180.948 | 183.84 | 186.207 | 190.23 | 192.22 | 195.08 | 196.9665 | Hg
200.59 | 204.38 | 207.2 | 208.9804 | (209) | (210) | (222) | | 7 | 87
Fr | Ra | 103
Lr | 104
R f | 105
Db | 106
So | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rσ | 112
Cn | Uut | 114
Fl | 115
Uup | 116
Lv | Uus | Uuo | | , | (223) | (226) | (262) | (261) | (262) | Sg (266) | (264) | (269) | (268) | (281) | Rg (272) | (285) | (284) | (289) | (288) | (292) | (297) | (294) | 6 | 57
La | 58
Ce | 59
Pr | 60
Nd | Pm | Sm 62 | 63
Eu | 64
Gd | 65
Tb | 66
Dv | Ho | 68
Er | 69
Tm | 70
Yb | | | | | | O | 138.9055 | 140.115 | 140.9076 | 144.24 | (145) | 150.36 | 151.965 | 157.25 | 158.9253 | Dy
162.50 | 164.9303 | 167.26 | 168.9342 | 173.04 | | | | | | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | https://preparatorychemistry.com/Bishop_periodic_table.pdf Am Cm Np (237) Pu Ac Bk Cf Es Fm Md No (259) ### Our Calculation – Step 1 What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P? Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀ Before we can convert grams P to moles P, we need to convert kg to g. Converts given mass unit into grams. ### Our Calculation The chemical formula provides a conversion factor for converting from moles of phosphorus atoms to moles of tetraphosphorus decoxide molecules in the second step of our calculation. If $$\frac{1 \text{ molecule P}_4O_{10}}{4 \text{ atoms P}}$$ then $\frac{1 \text{ mol P}_4O_{10}}{4 \text{ mol P}}$ ### Our Calculation – Steps 1 and 2 - What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P? - Here are the first two steps in our calculation. ### Molecular Mass - Whole = sum of parts - mass of a molecule = sum of the masses of the atoms in the molecule - molecular mass = the sum of the atomic masses of the atoms in the molecule Molar mass O: 15.9994 g/mol Molar mass H: 1.00794 g/mol 1.00794 g/mol Molar mass H₂O: 18.0153 g/mol | | | | | | | | | | | | | | | | | | | 18 | |---|----------------------|--------------------------------|----------------------|-------------------------------|----------------------|---------------------|--------------------------------|--------------------|----------------------|---------------------|----------------------|-------------------------------|----------------------|---------------------|---------------------------------|------------------------------|---------------------|---------------------| 8A | | | 1 | 2 | | | | | | | | 1 | ¹
H | | 13 | 14 | 15 | 16 | 17 | He l | | | 1A | 2A | | | | | | | | 1 | 1.00794 | | 3A | 4A | 5A | 6A | 7A | 4.0026 | | 2 | 3
Li
6.941 | 4
Be
_{9.0122} | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
20.1797 | | 3 | Na | $\frac{12}{M\alpha}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | | J | 22.9898 | Mg
24.3050 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | 26.9815 | 28.0855 | 30.9738 | 32.066 | 35.4527 | 39.948 | | 4 | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.867 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9380 | 26
Fe
55.845 | 27
Co
58.9332 | 28
Ni
58.6934 | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
_{78.96} | 35
Br
79.904 | 36
Kr
83.80 | | 5 | 37
Rb
85.4678 | 38
Sr
87.62 | 39
Y
88.9058 | 40
Zr
91.224 | 41
Nb
92.9064 | 42
Mo
95.95 | 43
Tc
(98) | 44
Ru
101.07 | 45
Rh
102.9055 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.760 | 52
Te
127.60 | 53
I
126.9045 | 54
Xe
131.29 | | 6 | 55
Cs
132.9054 | 56
Ba
_{137.327} | 71
Lu
174.967 | 72
Hf
_{178.49} | 73
Ta
180.948 | 74
W
183.84 | 75
Re
_{186.207} | 76
Os
190.23 | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196.9665 | 80
Hg
_{200.59} | 81
Tl
204.38 | 82
Pb
207.2 | 83
Bi
_{208.9804} | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | 7 | 87
Fr
(223) | 88
Ra
(226) | 103
Lr
(262) | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(266) | 107
Bh
(264) | 108
Hs
(269) | 109
Mt
(268) | 110
Ds
(281) | 111
Rg
(272) | 112
Cn
(285) | 113
Uut
(284) | 114
Fl
(289) | 115
Uup
(288) | 116
Lv
(292) | 117
Uus
(297) | 118
Uuo
(294) | 6 | 57
La
138.9055 | 58
Ce
140.115 | 59
Pr
140.9076 | 60
Nd
144.24 | 61
Pm
(145) | 62
Sm
150.36 | 63
Eu
151.965 | 64
Gd
157.25 | 65
Tb
158.9253 | 66
Dy
162.50 | 67
Ho
164.9303 | 68
Er
167.26 | 69
Tm
168.9342 | 70
Yb
173.04 | | | | | | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | https://preparatorychemistry.com/Bishop_periodic_table.pdf Am Cm Np (237) Pu Bk Cf Es Fm Md No # Molar Mass For Molecular Compounds Molecular Mass = Sum of the atomic masses of the atoms in one molecule (molecular mass) g molecular compound 1mol molecular compound #### **Our Calculation** What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P? Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀ We can now take the next step in our calculation using the molar mass of P₄O₁₀ that comes from its molecular mass to convert from mol P₄O₁₀ to g P₄O₁₀. 4(30.9738) + 10(15.9994) = 283.889 (with the correct rounding) $$? kg P_4 O_{10} = 1.09 \times 10^4 kg P \left(\frac{10^3 g}{1 kg}\right) \left(\frac{1 mol P}{30.9738 gP}\right) \left(\frac{1 mol P_4 O_{10}}{4 mol P}\right) \left(\frac{283.889 g P_4 O_{10}}{1 mol P_4 O_{10}}\right)$$ | | | | | | | | | | | | | | | | | | | 18 | |---|--------------------|------------------------------|---------------------|--------------------|--------------------|---------------------|---------------------|--------------------|---------------------|---------------------|--------------------|-------------------|--------------------|-------------------|---------------------|------------------------------|--------------------|--------------------------------| 8A | | | 1 | 2 | | | | | | | | 1 | 1
H | | 13 | 14 | 15 | 16 | 17 | He 2 | | | 1A | 2A | | | | | | | | 1 | 1.00794 | | 3A | 4A | 5A | 6A | 7A | 1.0026 | | 2 | 3
Li
6.941 | 4
Be
_{9.0122} | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
_{20.1797} | | 3 | Na | $\frac{12}{M\alpha}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | |) | 22.9898 | Mg
24.3050 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | 26.9815 | 28.0855 | 30.9738 | 32.066 | 35.4527 | 39.948 | | 4 | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.867 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9380 | 26
Fe
55.845 | 27
Co
58.9332 | 28
Ni
58.6934 | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
_{78.96} | 35
Br
79.904 | 36
Kr
83.80 | | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50
Sn | 51 | 52
Te | 53
I | 54 | | 5 | Rb
85.4678 | Sr
87.62 | Y
88.9058 | Zr
91.224 | Nb
92.9064 | Mo
95.95 | Tc (98) | Ru
101.07 | Rh
102.9055 | Pd
106.42 | Ag
107.868 | Cd | In
114.818 | Sn
118.710 | Sb
121.760 | Te
127.60 | I
126.9045 | Xe
131.29 | | 6 | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Ho | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | Ü | 132.9054 | 137.327 | 174.967 | 178.49 | 180.948 | 183.84 | 186.207 | 190.23 | 192.22 | 195.08 | 196.9665 | Hg
200.59 | 204.38 | 207.2 | 208.9804 | (209) | (210) | (222) | | 7 | 87
Fr | Ra | 103
Lr | 104
R f | 105
Db | 106
So | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rσ | 112
Cn | Uut | 114
Fl | 115
Uup | 116
Lv | Uus | Uuo | | , | (223) | (226) | (262) | (261) | (262) | Sg (266) | (264) | (269) | (268) | (281) | Rg (272) | (285) | (284) | (289) | (288) | (292) | (297) | (294) | 6 | 57
La | 58
Ce | 59
Pr | 60
Nd | Pm | Sm 62 | 63
Eu | 64
Gd | 65
Tb | 66
Dv | Ho | 68
Er | 69
Tm | 70
Yb | | | | | | O | 138.9055 | 140.115 | 140.9076 | 144.24 | (145) | 150.36 | 151.965 | 157.25 | 158.9253 | Dy
162.50 | 164.9303 | 167.26 | 168.9342 | 173.04 | | | | | | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | https://preparatorychemistry.com/Bishop_periodic_table.pdf Am Cm Np (237) Pu Ac Bk Cf Es Fm Md No (259) #### **Our Calculation** What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P? Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀ We can now complete our calculation by converting grams to kilograms. ### Formula Units - A *formula unit* of a substance is the group represented by the substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. - Formula unit is a general term that can be used in reference to elements, molecular compounds, or ionic compounds. #### Formula Unit Examples neon gas (element) A formula unit of neon contains one Ne atom. liquid water (molecular compound) Liquid water is composed of discrete H₂O molecules. A formula unit of water contains one oxygen atom and two hydrogen atoms. ammonium chloride (ionic compound) There are no separate ammonium chloride, NH₄Cl, molecules. Each ion is equally attracted to eight others. A formula unit of ammonium chloride contains one ammonium ion, NH₄⁺, and one chloride ion, Cl⁻, (or one nitrogen atom, four hydrogen atoms, and one chloride ion). # Formula Mass for Ionic Compounds - Whole = sum of parts - Mass of a formula unit = sum of the masses of the atoms in the formula unit - Formula mass = the sum of the atomic masses of the atoms in the formula Formula unit NaCl Molar mass Na: 22.9898 g/mol Molar mass Cl: 35.4527 g/mol Molar mass NaCl: 58.4425 g/mol | | | | | | | | | | | | | | | | | | | 18 | |---|--------------------|------------------------------|---------------------|--------------------|--------------------|---------------------|---------------------|--------------------|---------------------|---------------------|--------------------|-------------------|--------------------|-------------------|---------------------|------------------------------|--------------------|--------------------------------| 8A | | | 1 | 2 | | | | | | | | 1 | 1
H | | 13 | 14 | 15 | 16 | 17 | He 2 | | | 1A | 2A | | | | | | | | 1 | 1.00794 | | 3A | 4A | 5A | 6A | 7A | 1.0026 | | 2 | 3
Li
6.941 | 4
Be
_{9.0122} | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
_{20.1797} | | 3 | Na | $\frac{12}{M\alpha}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | |) | 22.9898 | Mg
24.3050 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | 26.9815 | 28.0855 | 30.9738 | 32.066 | 35.4527 | 39.948 | | 4 | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.867 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9380 | 26
Fe
55.845 | 27
Co
58.9332 | 28
Ni
58.6934 | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
_{78.96} | 35
Br
79.904 | 36
Kr
83.80 | | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50
Sn | 51 | 52
Te | 53
I | 54 | | 5 | Rb
85.4678 | Sr
87.62 | Y
88.9058 | Zr
91.224 | Nb
92.9064 | Mo
95.95 | Tc (98) | Ru
101.07 | Rh
102.9055 | Pd
106.42 | Ag
107.868 | Cd | In
114.818 | Sn
118.710 | Sb
121.760 | Te
127.60 | I
126.9045 | Xe
131.29 | | 6 | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Ho | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | Ü | 132.9054 | 137.327 | 174.967 | 178.49 | 180.948 | 183.84 | 186.207 | 190.23 | 192.22 | 195.08 | 196.9665 | Hg
200.59 | 204.38 | 207.2 | 208.9804 | (209) | (210) | (222) | | 7 | 87
Fr | Ra | 103
Lr | 104
R f | 105
Db | 106
So | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rσ | 112
Cn | Uut | 114
Fl | 115
Uup | 116
Lv | Uus | Uuo | | , | (223) | (226) | (262) | (261) | (262) | Sg (266) | (264) | (269) | (268) | (281) | Rg (272) | (285) | (284) | (289) | (288) | (292) | (297) | (294) | 6 | 57
La | 58
Ce | 59
Pr | 60
Nd | Pm | Sm 62 | 63
Eu | 64
Gd | 65
Tb | 66
Dv | Ho | 68
Er | 69
Tm | 70
Yb | | | | | | O | 138.9055 | 140.115 | 140.9076 | 144.24 | (145) | 150.36 | 151.965 | 157.25 | 158.9253 | Dy
162.50 | 164.9303 | 167.26 | 168.9342 | 173.04 | | | | | | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | https://preparatorychemistry.com/Bishop_periodic_table.pdf Am Cm Np (237) Pu Ac Bk Cf Es Fm Md No (259) # Molar Mass For Ionic Compounds Formula Mass = Sum of the atomic masses of the atoms in a formula unit (formula mass) g ionic compound 1 mol ionic compound | | | | | | | | | | | | | | | | | | | 18 | |---|----------------------|--------------------------------|----------------------|-------------------------------|----------------------|---------------------|--------------------------------|--------------------|----------------------|---------------------|----------------------|-------------------------------|----------------------|---------------------|---------------------------------|------------------------------|---------------------|---------------------| 8A | | | 1 | 2 | | | | | | | | 1 | ¹
H | | 13 | 14 | 15 | 16 | 17 | He l | | | 1A | 2A | | | | | | | | 1 | 1.00794 | | 3A | 4A | 5A | 6A | 7A | 4.0026 | | 2 | 3
Li
6.941 | 4
Be
_{9.0122} | | | | | | | | | | | 5
B
10.811 | 6
C
12.011 | 7
N
14.0067 | 8
O
15.9994 | 9
F
18.9984 | 10
Ne
20.1797 | | 3 | Na | $\frac{12}{M\alpha}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | | J | 22.9898 | Mg
24.3050 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | 26.9815 | 28.0855 | 30.9738 | 32.066 | 35.4527 | 39.948 | | 4 | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.9559 | 22
Ti
47.867 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.9380 | 26
Fe
55.845 | 27
Co
58.9332 | 28
Ni
58.6934 | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.9216 | 34
Se
_{78.96} | 35
Br
79.904 | 36
Kr
83.80 | | 5 | 37
Rb
85.4678 | 38
Sr
87.62 | 39
Y
88.9058 | 40
Zr
91.224 | 41
Nb
92.9064 | 42
Mo
95.95 | 43
Tc
(98) | 44
Ru
101.07 | 45
Rh
102.9055 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.760 | 52
Te
127.60 | 53
I
126.9045 | 54
Xe
131.29 | | 6 | 55
Cs
132.9054 | 56
Ba
_{137.327} | 71
Lu
174.967 | 72
Hf
_{178.49} | 73
Ta
180.948 | 74
W
183.84 | 75
Re
_{186.207} | 76
Os
190.23 | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196.9665 | 80
Hg
_{200.59} | 81
Tl
204.38 | 82
Pb
207.2 | 83
Bi
_{208.9804} | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | 7 | 87
Fr
(223) | 88
Ra
(226) | 103
Lr
(262) | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(266) | 107
Bh
(264) | 108
Hs
(269) | 109
Mt
(268) | 110
Ds
(281) | 111
Rg
(272) | 112
Cn
(285) | 113
Uut
(284) | 114
Fl
(289) | 115
Uup
(288) | 116
Lv
(292) | 117
Uus
(297) | 118
Uuo
(294) | 6 | 57
La
138.9055 | 58
Ce
140.115 | 59
Pr
140.9076 | 60
Nd
144.24 | 61
Pm
(145) | 62
Sm
150.36 | 63
Eu
151.965 | 64
Gd
157.25 | 65
Tb
158.9253 | 66
Dy
162.50 | 67
Ho
164.9303 | 68
Er
167.26 | 69
Tm
168.9342 | 70
Yb
173.04 | | | | | | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | https://preparatorychemistry.com/Bishop_periodic_table.pdf Am Cm Np (237) Pu Bk Cf Es Fm Md No