Making Phosphoric Acid

- Furnace Process for making H₃PO₄ to be used to make fertilizers, detergents, and pharmaceuticals.
 - React phosphate rock with sand and coke at 2000 °C.

$$2Ca_3(PO_4)_2 + 6SiO_2 + 10C$$

$$\rightarrow 4P + 10CO + 6CaSiO_3$$

React phosphorus with oxygen to get tetraphosphorus decoxide.

$$4P + 5O_2 \rightarrow P_4O_{10}$$

 React tetraphosphorus decoxide with water to make phosphoric acid.

$$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$$

Sample Calculations (1)

- What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P?
- Beginning of unit analysis setup.

$$\frac{1}{2} \log P_4 O_{10} = 1.09 \times 10^4 \log P \left(\frac{1 \log P}{1 \log P} \right)$$

The formula for P₄O₁₀ provides us with a conversion factor that converts from units of P to units of P₄O₁₀.
 1 molecule P₄O₁₀

4 atoms P

Goal: To develop conversion factors that will convert between a measurable property (mass) and number of particles

?
$$kg P_4 O_{10} = 1.09 \times 10^4 kg P \left(\frac{1 kg}{1 kg} \right)$$

Measurable Property 1

Mass 1

Number of Particles 1

Number of Particles 1

Number of Particles 2

Number of Particles 2

Mass 2

Measurable Property 2

Molar Conversions

Our Calculation

- What is the maximum mass of P_4O_{10} that can be formed from 1.09×10^4 kg P?
- Here are the general steps for our calculation.

Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀

Our Calculation – Step 1

Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀

 We can convert grams of P to moles of P using the molar mass of P, which comes from its atomic mass that is found on the periodic table.

$$\frac{30.9738 \text{ g P}}{1 \text{ mol P}}$$
 or $\frac{1 \text{ mol P}}{30.9738 \text{ g P}}$

																		18
																		8A
	1	2								1	1 H		13	14	15	16	17	He 2
	1A	2A								1	1.00794		3A	4A	5A	6A	7A	1.0026
2	3 Li 6.941	4 Be _{9.0122}											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne _{20.1797}
3	Na	$\frac{12}{M\alpha}$	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
)	22.9898	Mg 24.3050	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
4	19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9380	26 Fe 55.845	27 Co 58.9332	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se _{78.96}	35 Br 79.904	36 Kr 83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50 Sn	51	52 Te	53 I	54
5	Rb 85.4678	Sr 87.62	Y 88.9058	Zr 91.224	Nb 92.9064	Mo 95.95	Tc (98)	Ru 101.07	Rh 102.9055	Pd 106.42	Ag 107.868	Cd	In 114.818	Sn 118.710	Sb 121.760	Te 127.60	I 126.9045	Xe 131.29
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Ho	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
Ü	132.9054	137.327	174.967	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.9665	Hg 200.59	204.38	207.2	208.9804	(209)	(210)	(222)
7	87 Fr	Ra	103 Lr	104 R f	105 Db	106 So	107 Bh	108 Hs	109 Mt	110 Ds	111 Rσ	112 Cn	Uut	114 Fl	115 Uup	116 Lv	Uus	Uuo
,	(223)	(226)	(262)	(261)	(262)	Sg (266)	(264)	(269)	(268)	(281)	Rg (272)	(285)	(284)	(289)	(288)	(292)	(297)	(294)
		6	57 La	58 Ce	59 Pr	60 Nd	Pm	Sm 62	63 Eu	64 Gd	65 Tb	66 Dv	Ho	68 Er	69 Tm	70 Yb		
		O	138.9055	140.115	140.9076	144.24	(145)	150.36	151.965	157.25	158.9253	Dy 162.50	164.9303	167.26	168.9342	173.04		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		

https://preparatorychemistry.com/Bishop_periodic_table.pdf

Am

Cm

Np
(237)

Pu

Ac

Bk

Cf

Es

Fm

Md

No (259)

Our Calculation – Step 1

 What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P?

Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀

 Before we can convert grams P to moles P, we need to convert kg to g.

Converts given mass unit into grams.

Our Calculation

 The chemical formula provides a conversion factor for converting from moles of phosphorus atoms to moles of tetraphosphorus decoxide molecules in the second step of our calculation.

If
$$\frac{1 \text{ molecule P}_4O_{10}}{4 \text{ atoms P}}$$
 then $\frac{1 \text{ mol P}_4O_{10}}{4 \text{ mol P}}$

Our Calculation – Steps 1 and 2

- What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P?
- Here are the first two steps in our calculation.

Molecular Mass

- Whole = sum of parts
- mass of a molecule = sum of the masses of the atoms in the molecule
- molecular mass = the sum of the atomic masses of the atoms in the molecule

Molar mass O: 15.9994 g/mol Molar mass H: 1.00794 g/mol 1.00794 g/mol Molar mass H₂O: 18.0153 g/mol

																		18
																		8A
	1	2								1	¹ H		13	14	15	16	17	He l
	1A	2A								1	1.00794		3A	4A	5A	6A	7A	4.0026
2	3 Li 6.941	4 Be _{9.0122}											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
3	Na	$\frac{12}{M\alpha}$	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
J	22.9898	Mg 24.3050	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
4	19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9380	26 Fe 55.845	27 Co 58.9332	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se _{78.96}	35 Br 79.904	36 Kr 83.80
5	37 Rb 85.4678	38 Sr 87.62	39 Y 88.9058	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.9045	54 Xe 131.29
6	55 Cs 132.9054	56 Ba _{137.327}	71 Lu 174.967	72 Hf _{178.49}	73 Ta 180.948	74 W 183.84	75 Re _{186.207}	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.9665	80 Hg _{200.59}	81 Tl 204.38	82 Pb 207.2	83 Bi _{208.9804}	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	103 Lr (262)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Cn (285)	113 Uut (284)	114 Fl (289)	115 Uup (288)	116 Lv (292)	117 Uus (297)	118 Uuo (294)
		6	57 La 138.9055	58 Ce 140.115	59 Pr 140.9076	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.9253	66 Dy 162.50	67 Ho 164.9303	68 Er 167.26	69 Tm 168.9342	70 Yb 173.04		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		

https://preparatorychemistry.com/Bishop_periodic_table.pdf

Am

Cm

Np (237)

Pu

Bk

Cf

Es

Fm

Md

No

Molar Mass For Molecular Compounds

 Molecular Mass = Sum of the atomic masses of the atoms in one molecule

(molecular mass) g molecular compound

1mol molecular compound

Our Calculation

 What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P?

Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀

 We can now take the next step in our calculation using the molar mass of P₄O₁₀ that comes from its molecular mass to convert from mol P₄O₁₀ to g P₄O₁₀.

4(30.9738) + 10(15.9994) = 283.889 (with the correct rounding)

$$? kg P_4 O_{10} = 1.09 \times 10^4 kg P \left(\frac{10^3 g}{1 kg}\right) \left(\frac{1 mol P}{30.9738 gP}\right) \left(\frac{1 mol P_4 O_{10}}{4 mol P}\right) \left(\frac{283.889 g P_4 O_{10}}{1 mol P_4 O_{10}}\right)$$

																		18
																		8A
	1	2								1	1 H		13	14	15	16	17	He 2
	1A	2A								1	1.00794		3A	4A	5A	6A	7A	1.0026
2	3 Li 6.941	4 Be _{9.0122}											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne _{20.1797}
3	Na	$\frac{12}{M\alpha}$	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
)	22.9898	Mg 24.3050	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
4	19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9380	26 Fe 55.845	27 Co 58.9332	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se _{78.96}	35 Br 79.904	36 Kr 83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50 Sn	51	52 Te	53 I	54
5	Rb 85.4678	Sr 87.62	Y 88.9058	Zr 91.224	Nb 92.9064	Mo 95.95	Tc (98)	Ru 101.07	Rh 102.9055	Pd 106.42	Ag 107.868	Cd	In 114.818	Sn 118.710	Sb 121.760	Te 127.60	I 126.9045	Xe 131.29
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Ho	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
Ü	132.9054	137.327	174.967	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.9665	Hg 200.59	204.38	207.2	208.9804	(209)	(210)	(222)
7	87 Fr	Ra	103 Lr	104 R f	105 Db	106 So	107 Bh	108 Hs	109 Mt	110 Ds	111 Rσ	112 Cn	Uut	114 Fl	115 Uup	116 Lv	Uus	Uuo
,	(223)	(226)	(262)	(261)	(262)	Sg (266)	(264)	(269)	(268)	(281)	Rg (272)	(285)	(284)	(289)	(288)	(292)	(297)	(294)
		6	57 La	58 Ce	59 Pr	60 Nd	Pm	Sm 62	63 Eu	64 Gd	65 Tb	66 Dv	Ho	68 Er	69 Tm	70 Yb		
		O	138.9055	140.115	140.9076	144.24	(145)	150.36	151.965	157.25	158.9253	Dy 162.50	164.9303	167.26	168.9342	173.04		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		

https://preparatorychemistry.com/Bishop_periodic_table.pdf

Am

Cm

Np
(237)

Pu

Ac

Bk

Cf

Es

Fm

Md

No (259)

Our Calculation

 What is the maximum mass of P₄O₁₀ that can be formed from 1.09 × 10⁴ kg P?

Mass P \rightarrow moles P \rightarrow moles P₄O₁₀ \rightarrow mass P₄O₁₀

 We can now complete our calculation by converting grams to kilograms.

Formula Units

- A *formula unit* of a substance is the group represented by the substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula.
- Formula unit is a general term that can be used in reference to elements, molecular compounds, or ionic compounds.

Formula Unit Examples

neon gas (element)

A formula unit of neon contains one Ne atom.

liquid water (molecular compound)

Liquid water is composed of discrete H₂O molecules.

A formula unit of water contains one oxygen atom and two hydrogen atoms.

ammonium chloride (ionic compound)

There are no separate ammonium chloride, NH₄Cl, molecules. Each ion is equally attracted to eight others. A formula unit of ammonium chloride contains one ammonium ion, NH₄⁺, and one chloride ion, Cl⁻, (or one nitrogen atom, four hydrogen atoms, and one chloride ion).

Formula Mass for Ionic Compounds

- Whole = sum of parts
- Mass of a formula unit = sum of the masses of the atoms in the formula unit
- Formula mass = the sum of the atomic masses of the atoms in the formula

Formula unit NaCl

Molar mass Na: 22.9898 g/mol

Molar mass Cl: 35.4527 g/mol

Molar mass NaCl: 58.4425 g/mol

																		18
																		8A
	1	2								1	1 H		13	14	15	16	17	He 2
	1A	2A								1	1.00794		3A	4A	5A	6A	7A	1.0026
2	3 Li 6.941	4 Be _{9.0122}											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne _{20.1797}
3	Na	$\frac{12}{M\alpha}$	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
)	22.9898	Mg 24.3050	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
4	19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9380	26 Fe 55.845	27 Co 58.9332	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se _{78.96}	35 Br 79.904	36 Kr 83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50 Sn	51	52 Te	53 I	54
5	Rb 85.4678	Sr 87.62	Y 88.9058	Zr 91.224	Nb 92.9064	Mo 95.95	Tc (98)	Ru 101.07	Rh 102.9055	Pd 106.42	Ag 107.868	Cd	In 114.818	Sn 118.710	Sb 121.760	Te 127.60	I 126.9045	Xe 131.29
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Ho	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
Ü	132.9054	137.327	174.967	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.9665	Hg 200.59	204.38	207.2	208.9804	(209)	(210)	(222)
7	87 Fr	Ra	103 Lr	104 R f	105 Db	106 So	107 Bh	108 Hs	109 Mt	110 Ds	111 Rσ	112 Cn	Uut	114 Fl	115 Uup	116 Lv	Uus	Uuo
,	(223)	(226)	(262)	(261)	(262)	Sg (266)	(264)	(269)	(268)	(281)	Rg (272)	(285)	(284)	(289)	(288)	(292)	(297)	(294)
		6	57 La	58 Ce	59 Pr	60 Nd	Pm	Sm 62	63 Eu	64 Gd	65 Tb	66 Dv	Ho	68 Er	69 Tm	70 Yb		
		O	138.9055	140.115	140.9076	144.24	(145)	150.36	151.965	157.25	158.9253	Dy 162.50	164.9303	167.26	168.9342	173.04		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		

https://preparatorychemistry.com/Bishop_periodic_table.pdf

Am

Cm

Np
(237)

Pu

Ac

Bk

Cf

Es

Fm

Md

No (259)

Molar Mass For Ionic Compounds

 Formula Mass = Sum of the atomic masses of the atoms in a formula unit

(formula mass) g ionic compound

1 mol ionic compound

																		18
																		8A
	1	2								1	¹ H		13	14	15	16	17	He l
	1A	2A								1	1.00794		3A	4A	5A	6A	7A	4.0026
2	3 Li 6.941	4 Be _{9.0122}											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
3	Na	$\frac{12}{M\alpha}$	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
J	22.9898	Mg 24.3050	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
4	19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9380	26 Fe 55.845	27 Co 58.9332	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se _{78.96}	35 Br 79.904	36 Kr 83.80
5	37 Rb 85.4678	38 Sr 87.62	39 Y 88.9058	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.9045	54 Xe 131.29
6	55 Cs 132.9054	56 Ba _{137.327}	71 Lu 174.967	72 Hf _{178.49}	73 Ta 180.948	74 W 183.84	75 Re _{186.207}	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.9665	80 Hg _{200.59}	81 Tl 204.38	82 Pb 207.2	83 Bi _{208.9804}	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	103 Lr (262)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Cn (285)	113 Uut (284)	114 Fl (289)	115 Uup (288)	116 Lv (292)	117 Uus (297)	118 Uuo (294)
		6	57 La 138.9055	58 Ce 140.115	59 Pr 140.9076	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.9253	66 Dy 162.50	67 Ho 164.9303	68 Er 167.26	69 Tm 168.9342	70 Yb 173.04		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		

https://preparatorychemistry.com/Bishop_periodic_table.pdf

Am

Cm

Np (237)

Pu

Bk

Cf

Es

Fm

Md

No