Nuclides

- Nuclide = a particular type of nucleus, characterized by a specific number of protons and neutrons and therefore a specific atomic number and nucleon number.
- Nucleon number or mass number =
 the number of nucleons (protons and
 neutrons) in the nucleus of a nuclide.

Nuclide Symbolism

Mass number (nucleon number)

AX ZX Element symbol

Radioactive lodine

 One of the products of the fission reaction of uranium atoms with 92 protons and 143 neutrons is iodine atoms with 53 protons and 78 neutrons.

Two Forces in Nucleus

- Electromagnetic force = the force that causes opposite electrical charges to attract each other and like charges to repel each other.
- **Strong force** = the attractive force between nucleons (protons and neutrons).

Formation of a Helium Nucleus

Helium-2 with just two protons nucleus is unstable.

- The shorter the distance between the protons is, the stronger the electromagnetic repulsion between them.
- When they are close enough to form a helium nucleus, the strong force is not strong enough to overcome the electromagnetic repulsion, so the protons are pushed apart.

Nuclear Stability

- Neutrons increase the attraction from the strong force without increasing electromagnetic repulsion between nucleons.
- Combining two neutrons with two protons increases the strong force enough to overcome the electromagnetic repulsion, making a stable helium nucleus.

Beta Emission

A neutron becomes a proton (which stays in the nucleus) and an electron (which is ejected from the atom).

Positron Emission

A proton becomes a neutron (which stays in the nucleus) and a positron (which is ejected from the atom).

Electron Capture

An electron combines with a proton to form a neutron.

Gamma Emission

Nuclear Reactions

- Nuclear reactions involve changes in the nucleus, whereas chemical reactions involve the loss, gain, and sharing of electrons.
- Different isotopes of the same element may undergo very different nuclear reactions, even though an element's isotopes all share the same chemical characteristics.

Nuclear Reactions (2)

- Unlike chemical reactions, the rates of nuclear reactions are unaffected by temperature, pressure, and the presence of other atoms to which the radioactive atom may be bonded.
- Nuclear reactions, in general, give off much more energy than chemical reactions.

Nuclear Equations

Alpha emission

mass number 238 234 + 4 = 238

$$^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}He$$

atomic number 92 90 + 2 = 92

Beta emission

mass number 131 131 + 0 = 131

$${}^{131}_{53}I \longrightarrow {}^{131}_{54}Xe + {}^{0}_{-1}e$$

atomic number 53 54 + (-1) = 53

Positron emission

mass number 40
$$40 + 0 = 40$$

 ${}^{40}_{19}K \longrightarrow {}^{40}_{18}Ar + {}^{0}_{+1}e$
atomic number 19 $18 + 1 = 19$

Electron capture

mass number
$$0 + 125 = 125$$
 125
 ${}^{0}_{-1}e + {}^{125}_{53}I \longrightarrow {}^{125}_{52}Te$
atomic number $-1 + 53 = 52$ 52

General Nuclear Equations

$${}_{Z}^{A}X \longrightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$$

$${}_{Z}^{A}X \longrightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}e$$

$$_{Z}^{A}X \longrightarrow _{Z-1}^{A}Y + _{+1}^{0}e$$

$$_{-1}^{0}e + _{Z}^{A}X \longrightarrow _{Z-}^{A}$$

Radioactive Decay Series

Ionization by Alpha Particles

3. The high-velocity alpha particle continues on and can create many ions.

1. A positively charged alpha particle attracts electrons enough to drag an electron off of an uncharged atom or molecule to form a cation.

 α^{2+}

2. The electron can combine with another uncharged atom or molecule to form an anion .

Ionization by Beta Particles

3. The high-velocity beta particle continues on and can create many ions.

1. A negatively charged beta particle repels electrons enough to push an electron off of an uncharged atom or molecule to form a cation.

2. The electron can combine with another uncharged atom or molecule to form an anion.

Ionization by Gamma Rays

2. The electron released might be moving fast enough to push electrons off other atoms and molecules to form many ions.

γ-ray —

1. When a gamma ray collides with an uncharged atom or molecule, it excites an electron to such a high energy level that it is removed completely to form a cation.

3. The electron released can combine with another uncharged atom or molecule to form an anion.

Radiation Effect on Body

 As the radioactive emissions ionize atoms and molecules, such as water molecules, they also form highly reactive free radicals, which are particles with unpaired electrons.

$$H_2O \rightarrow H_2O^{\bullet +} + e^-$$

 $H_2O^{\bullet +} + H_2O \rightarrow H_3O^+ + \bullet OH^-$
 $H_2O + e^- \rightarrow H^{\bullet} + OH^-$

 These reactive particles react with important substances in the body, leading to immediate damage and delayed problems, such as cancer.

Penetration by Radioactive Emissions

- There is an animation that will provide a review of radioactivity at the following web address.
- A portion of this animation describes the relative penetrating ability of alpha particles, beta particles, and gamma photons.

https://preparatorychemistry.com/radioactivity_Canvas.html