Important Skills from Previous Sections

- Determination of atomic mass, molecular mass, and formula mass
- Using molar mass to convert between mass and the number of particles expressed in moles
- How chemical formulas can be used to convert between moles of element and moles of compound containing that element.

General Conversions

Measurable property of substance 1

Step 1

Moles of substance 1

Step 2

Moles of substance 2

Step 3

Measurable property of substance 2

Units of One Substance to Units of Another

Any unit of an element

Unit analysis conversion factors

Units of Grams of element

Element to

Compound

Units of

Using molar mass derived from atomic mass

 $\left(\frac{1 \text{ mol element}}{\text{(atomic mass) g element}}\right)$

Moles of element

Using the mole ratio from the compound's formula

1 mol compound (number of atoms in formula) mol element

Moles of compound containing the element

Using molar mass derived from formula mass

 $\left(\frac{\text{(formula mass) g compound}}{1 \text{ mol compound}}\right)$

Grams of compound

Unit analysis conversion factors

Any unit of a compound

Study Sheets

- Write a description of the "tip-off" that helps you to recognize the type of problem the calculation represents.
- Write a description of the general procedure involved in the particular type of problem.
- Write an example of the type of calculation.

Sample Study Sheet: Converting
Between Mass of Element and Mass
of Compound Containing the Element

• **Tip-off:** When you analyze the type of unit you have and the type of unit you want, you recognize that you are converting between a unit associated with an element and a unit associated with a compound containing that element.

Sample Study Sheet (2) – General Steps

- If necessary, convert from the given unit to grams.
- Convert grams to moles of the first substance using its molar mass.
- Convert moles of the first substance to moles of the second substance using the molar ratio derived from the formula for the compound.
- Convert moles of the second substance to grams of the second substance using its molar mass.
- If necessary, convert from grams to the desired unit.

Any unit of an element

Unit analysis conversion factors

Units of Grams of element

Element to

Compound

Units of

Using molar mass derived from atomic mass

 $\left(\frac{1 \text{ mol element}}{\text{(atomic mass) g element}}\right)$

Moles of element

Using the mole ratio from the compound's formula

1 mol compound (number of atoms in formula) mol element

Moles of compound containing the element

Using molar mass derived from formula mass

 $\left(\frac{\text{(formula mass) g compound}}{1 \text{ mol compound}}\right)$

Grams of compound

Unit analysis conversion factors

Any unit of a compound

Exercise 1 – First Steps

First steps.

$$g S_2Cl_2 = 123.8 g S \left(\frac{g}{g} \right)$$

 Grams to moles 1, using the molar mass of sulfur that comes from its atomic mass on the periodic table.

? g
$$S_2Cl_2 = 123.8 \text{ g S} \left(\frac{1 \text{ mol S}}{32.066 \text{ g S}} \right)$$

 Moles 1 to moles 2, using the molar ratio that comes from the formula.

? g
$$S_2Cl_2 = 123.8$$
 g $S\left(\frac{1 \text{ mol } S}{32.066 \text{ g } S}\right)\left(\frac{1 \text{ mol } S_2Cl_2}{2 \text{ mol } S}\right)$

Moles of 2 to grams 2.

$$? g S_2Cl_2 = 123.8 g S \left(\frac{1 \text{ mol } S}{32.066 g S}\right) \left(\frac{1 \text{ mol } S_2Cl_2}{2 \text{ mol } S}\right) \left(\frac{135.037 g S_2Cl_2}{1 \text{ mol } S_2Cl_2}\right)$$

Final calculations.

? g
$$S_2Cl_2 = 123.8 \text{ g } S \left(\frac{1 \text{ mol } S}{32.066 \text{ g } S} \right) \left(\frac{1 \text{ mol } S_2Cl_2}{2 \text{ mol } S} \right) \left(\frac{135.037 \text{ g } S_2Cl_2}{1 \text{ mol } S_2Cl_2} \right)$$

$$= 260.7 \text{ g } S_2Cl_2$$

- Vanadium metal, used as a component of steel and to catalyze various industrial reactions, is produced from the reaction of vanadium(V) oxide, V₂O₅, and calcium metal. What is the mass in kilograms of vanadium in 2.3 kilograms of V₂O₅?
- First steps.

$$? kg V = 2.3 kg V_2 O_5 \left(\frac{}{kg} \right)$$

Given unit to grams 1.

? kg V = 2.3 kg
$$V_2O_5\left(\frac{10^3 \text{ g}}{1 \text{ kg}}\right)$$

Grams of 1 to moles 1, using the molar mass of V₂O₅ that comes from the sum of the atomic masses of 2 vanadium atoms and 5 oxygen atoms.

?
$$\log V = 2.3 \log V_2 O_5 \left(\frac{10^3 g}{1 \log}\right) \left(\frac{1 \mod V_2 O_5}{181.880 g V_2 O_5}\right)$$

Moles 1 to moles 2.

$$? kg V = 2.3 kg V_2 O_5 \left(\frac{10^3 g}{1 kg} \right) \left(\frac{1 \text{ mol } V_2 O_5}{181.880 \text{ g V}_2 O_5} \right) \left(\frac{2 \text{ mol V}}{1 \text{ mol V}_2 O_5} \right)$$

Moles 2 to grams 2.

$$? kg V = 2.3 kg V_2 O_5 \left(\frac{10^3 g}{1 kg}\right) \left(\frac{1 \text{ mol } V_2 O_5}{181.880 g V_2 O_5}\right) \left(\frac{2 \text{ mol } V}{1 \text{ mol } V_2 O_5}\right) \left(\frac{50.9415 g V}{1 \text{ mol } V}\right)$$

Grams to the desired unit.

$$? kg V = 2.3 kg V_2 O_5 \left(\frac{10^3 g}{1 kg}\right) \left(\frac{1 \text{ mol } V_2 O_5}{181.880 g V_2 O_5}\right) \left(\frac{2 \text{ mol } V}{1 \text{ mol } V_2 O_5}\right) \left(\frac{50.9415 g V}{1 \text{ mol } V}\right) \left(\frac{1 kg}{10^3 g}\right)$$

Complete the calculation.