Acidic and Basic Solutions

- The pH scale describes the acidity and basicity of dilute acid and base solutions.
- In pure water, there are proton transfers between water molecules that form hydronium ions and hydroxide ions.

 $2H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

The reaction is reversible, and at equilibrium, the product of the hydronium ion and hydroxide ion concentrations expressed in mol/L is about 10⁻¹⁴.
[H₃O⁺][OH⁻] = 10⁻¹⁴

$[H_3O^+][OH^-] = 10^{-14}$

- We consider acidic and basic solutions to be dilute if they have a concentrations of 1 mol/L or less.
- Because the product of the concentrations of H₃O⁺ and OH⁻ is 10⁻¹⁴, as the concentration of H₃O⁺ decreases from 1 mol/L to 10⁻¹⁴ mol/L, the concentration of OH⁻ increases from 10⁻¹⁴ mol/L to 1 mol/L.
- See the table at the right.

[H ₃ O ⁺] (mol/L)	[OH ⁻] (mol/L)
1	10-14
10 ⁻¹	10 ⁻¹³
10 -2	10 -12
10 -3	10-11
10-4	10 -10
10 ⁻⁵	10 ⁻⁹
10 -6	10 ⁻⁸
10 ⁻⁷	10-7
10 ⁻⁸	10 ⁻⁶
10 ⁻⁹	10 ⁻⁵
10 ⁻¹⁰	10-4
10 ⁻¹¹	10 ⁻³
10 ⁻¹²	10-2
10 ⁻¹³	10-1
10 ⁻¹⁴	1

$[H_3O^+][OH^-] = 10^{-14}$

- When the H₃O⁺ concentration is greater than the OH⁻ concentration, the solution is acidic. (Note that even in a dilute solution of acid, there are some hydroxide ions.)
- When the OH⁻ concentration is greater than the H₃O⁺ concentration, the solution is basic.
- When the concentrations are equal, both 10⁻⁷ mol/L, we say the solution is neutral in the acid/base sense.

[H ₃ O ⁺] (mol/L)	[OH ⁻] (mol/L)
1	10-14
10 -1	10 ⁻¹³
10 -2	10 -12
10 -3	10-11
10-4	10 ⁻¹⁰
10 ⁻⁵	10 ⁻⁹
10 ⁻⁶	10 ⁻⁸
10-7	10 ⁻⁷
10 -8	10 ⁻⁶
10 ⁻⁹	10 ⁻⁵
10 ⁻¹⁰	10-4
10-11	10 -3
10 ⁻¹²	10 ⁻²
10 -13	10 -1
10-14	1

 To avoid the small numbers associated with describing acidic and basic solutions in terms of mol/L, pH is defined as

 $pH = -log[H_3O^+]$

- An acidic solution that has an H₃O⁺ concentration of 10⁻³ mol/L has a pH of 3 (-log10⁻³ = 3).
- A basic solution that has an OH⁻ concentration of 10^{-3} mol/L, and therefore an H₃O⁺ concentration of 10^{-11} mol/L, has a pH of 11 (-log 10^{-11} = 11).

$[H_3O^+][OH^-] = 10^{-14}$

- Dilute acidic solutions with H₃O⁺ concentrations of 1 to 10⁻⁶ mol/L have a pHs of 0 to 6.
- Dilute basic solutions with OHconcentrations of 10⁻⁶ to 1 mol/L have H₃O⁺ concentrations of 10⁻⁸ to 10⁻¹⁴ mol/L and pHs of 8-14.
- Neutral solutions with H₃O⁺ and OH⁻ concentrations 10⁻⁷ mol/L have a pH of 7.

[H ₃ O ⁺] (mol/L)	[OH ⁻] (mol/L)	рН
1	10-14	0
10 -1	10 ⁻¹³	1
10-2	10 ⁻¹²	2
10 -3	1 0 ⁻¹¹	3
10-4	10 ⁻¹⁰	4
10 ⁻⁵	10 -9	5
10 -6	10 -8	6
10-7	10 -7	7
10 ⁻⁸	10 -6	8
10 ⁻⁹	10 ⁻⁵	9
10 ⁻¹⁰	10-4	10
10 -11	10 -3	11
10 ⁻¹²	10 -2	12
10 ⁻¹³	10 -1	13
10 ⁻¹⁴	1	14

Acidic solutions have pH values less than 7.

Basic solutions have pH values greater than 7.